Advertisement

Russian Chemical Bulletin

, Volume 55, Issue 1, pp 94–100 | Cite as

Crown-containing butadienyl dyes 8. Structures and complexation of chromogenic dithia-15(18)-crown-5(6) ethers

  • E. N. Ushakov
  • L. G. Kuz’mina
  • A. I. Vedernikov
  • M. S. Kapichnikova
  • J. A. K. Howard
  • M. Wörner
  • A. M. Braun
  • M. V. Alfimov
  • S. P. Gromov
Article

Abstract

The structures of new butadienyl dyes of the benzothiazole series containing the dithia-15-crown-5 (2a) or dithia-18-crown-6 (2b) fragments were established by X-ray diffraction. Complexation of dyes 2a,b with Hg2+, Pb2+, Cd2+, Ag+, Zn2+, and alkaline-earth cations in aqueous-acetonitrile solutions was studied by spectrophotometry. At a high percentage of water in solutions (Pw ≈ 50%), these dyes have a very low ability to bind Pb2+ cations (logK < 2) and virtually do not bind Cd2+, Zn2+, and alkaline-earth cations. At the same time, these dyes form stable 1: 1 complexes with Hg2+ and Ag+ cations at all Pw. The stability constants of complexes with the Ag+ cation increase with increasing Pw because the free energy of hydration of this cation is much lower than the free energy of solvation in acetonitrile. In the Pw range from 0 to 75%, the stability constants of the complexes of dyes 2a,b with the Hg2+ cation are larger than those of the corresponding complexes with the Ag+ cation by more than four orders of magnitude.

Key words

dithiacrown ethers butadienyl dyes chromoionophores X-ray diffraction complexation stability constants mercury silver lead 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. I. Sergeeva, S. P. Gromov, A. I. Vedernikov, M. S. Kapichnikova, M. V. Alfimov, V.-T. Lieu, D. Möbius, M. S. Tsarkova, and S. Yu. Zaitsev, Colloids and Surfaces A, 2005, 255, 201.CrossRefGoogle Scholar
  2. 2.
    C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017.CrossRefGoogle Scholar
  3. 3.
    M. Takagi, H. Nakamura, and K. Ueno, Anal. Lett., 1977, 10, 1115.Google Scholar
  4. 4.
    J. P. Dix and F. Vögtle, Angew. Chem., Int. Ed. Engl., 1978, 17, 857.CrossRefGoogle Scholar
  5. 5.
    H.-G. Löhr and F. Vögtle, Acc. Chem. Res., 1985, 18, 65.CrossRefGoogle Scholar
  6. 6.
    T. Hayashita and M. Takagi, in Comprehensive Supramolecular Chemistry, Ed. G. W. Gokel, Pergamon, Oxford, 1996, 1, p. 635.Google Scholar
  7. 7.
    S. P. Gromov, M. V. Fomina, E. N. Ushakov, I. K. Lednev, and M. V. Alfimov, Dokl. Akad. Nauk SSSR, 1990, 314, 1135 [Dokl. Chem., 1990, 314 (Engl. Transl.)].Google Scholar
  8. 8.
    E. N. Ushakov, S. P. Gromov, O. A. Fedorova, Yu. V. Pershina, M. V. Alfimov, F. Barigelletti, L. Flamigni, and V. Balzani, J. Phys. Chem. A, 1999, 103, 11188.Google Scholar
  9. 9.
    S. P. Gromov, A. I. Vedernikov, E. N. Ushakov, L. G. Kuz’mina, A. V. Feofanov, V. G. Avakyan, A. V. Churakov, Y. S. Alaverdyan, E.V. Malysheva, M. V. Alfimov, J. A. K. Howard, B. Eliasson, and U. G. Edlund, Helv. Chim. Acta, 2002, 85, 60.CrossRefGoogle Scholar
  10. 10.
    J. S. Bradshaw and R. M. Izatt, Acc. Chem. Res., 1997, 30, 338.CrossRefGoogle Scholar
  11. 11.
    R. M. Izatt, K. Pawlak, J. S. Bradshaw, and R. L. Bruening, Chem. Rev., 1991, 91, 1721.CrossRefGoogle Scholar
  12. 12.
    S. P. Gromov, O. A. Fedorova, A. I. Vedernikov, Yu. V. Fedorov, and M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 1997, 1007 [Russ. Chem. Bull., Int. Ed., 1997, 46, 959].Google Scholar
  13. 13.
    M. V. Alfimov, S. P. Gromov, Yu. V. Fedorov, O. A. Fedorova, A. I. Vedernikov, A. V. Churakov, L. G. Kuz’mina, J. A. K. Howard, S. Bossmann, A. Braun, M. Woerner, D. F. Sears, and J. Saltiel, J. Am. Chem. Soc., 1999, 121, 4992.CrossRefGoogle Scholar
  14. 14.
    O. A. Fedorova, Yu. V. Fedorov, A. I. Vedernikov, S. P. Gromov, O. V. Yescheulova, and M. V. Alfimov, J. Phys. Chem. A, 2002, 106, 6213.CrossRefGoogle Scholar
  15. 15.
    E. N. Ushakov, S. P. Gromov, L. G. Kuz’mina, A. I. Vedernikov, V. G. Avakyan, J. A. K. Howard, and M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 2004, 1491 [Russ. Chem. Bull., Int. Ed., 2004, 53, 1549].Google Scholar
  16. 16.
    H. Ephardt and P. Fromherz, J. Phys. Chem., 1989, 93, 7717.CrossRefGoogle Scholar
  17. 17.
    E. D. Glendening and D. Feller, J. Am. Chem. Soc., 1996, 118, 6052.CrossRefGoogle Scholar
  18. 18.
    G. Gritzner and F. Hörzenberger, J. Chem. Soc., Faraday Trans., 1992, 88, 3013.CrossRefGoogle Scholar
  19. 19.
    H. D. Inerowicz, W. Li, and I. Persson, J. Chem. Soc., Faraday Trans., 1994, 90, 2223.CrossRefGoogle Scholar
  20. 20.
    M. Chaudhry, K. C. Dash, E. Kamienska-Piotrowicz, Y. Kinjo, and I. Persson, J. Chem. Soc., Faraday Trans., 1994, 90, 2235.CrossRefGoogle Scholar
  21. 21.
    A. I. Vedernikov and S. P. Gromov, Synthesis, 2001, 889.Google Scholar
  22. 22.
    SAINT, Version 6.02A, Bruker AXS Inc., Madison, Wisconsin (USA), 2001.Google Scholar
  23. 23.
    SHELXTL-Plus, Version 5.10, Bruker AXS Inc., Madison, Wisconsin (USA), 1997.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. N. Ushakov
    • 1
  • L. G. Kuz’mina
    • 2
  • A. I. Vedernikov
    • 3
  • M. S. Kapichnikova
    • 3
  • J. A. K. Howard
    • 4
  • M. Wörner
    • 5
  • A. M. Braun
    • 5
  • M. V. Alfimov
    • 3
  • S. P. Gromov
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
  3. 3.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation
  4. 4.Department of ChemistryUniversity of DurhamDurhamUK
  5. 5.Department of Chemical and Process EngineeringUniversity of KarlsruheKarlsruheGermany

Personalised recommendations