Advertisement

Russian Chemical Bulletin

, Volume 54, Issue 9, pp 2235–2246 | Cite as

Application of the electronegativity indices of organic molecules to tasks of chemical informatics

  • M. I. Trofimov
  • E. A. Smolenskii
Information

Abstract

An efficient structure filtration method for the operation with chemical databases containing information on the structures and properties of organic molecules was proposed. The technique involves the use of electronegativity indices for generation of identification keys and for isomorphism tests of the molecular graphs corresponding to the structural formulas. The test set for the method proposed included a total of 95,000,000 molecules containing up to sixty carbon atoms. Tests revealed a high discriminating capability of the electronegativity indices and high efficiency of the method for solving both general problems (recognition of chemical structures, chemical database management systems) and specific tasks (generation of molecular graphs, etc.) in chemical informatics.

Key words

chemical informatics databases generation of graphs isomorphism of graphs computer chemistry recognition of chemical structures topological index electronegativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Zefirov, M. A. Kirpichenok, F. F. Izmailov, and M. I. Trofimov, Dokl. Akad. Nauk SSSR, 1987, 296, 883 [Dokl. Chem., 1987 (Engl. Transl.)].Google Scholar
  2. 2.
    M. I. Trofimov and E. A. Smolenskii, Izv. Akad. Nauk. Ser. Khim., 2000, 401 [Russ. Chem. Bull., Int. Ed., 2000, 49, 402].Google Scholar
  3. 3.
    R. T. Sanderson, Chemical Bonds and Bond Energy, Acad. Press, New York, 1976, 218 pp.Google Scholar
  4. 4.
    N. S. Zefirov, M. A. Kirpichenok, and M. I. Trofimov, Dokl. Akad. Nauk SSSR, 1989, 304, 887 [Dokl. Chem., 1989 (Engl. Transl.)].Google Scholar
  5. 5.
    M. R. Nelson, Dr. Dobb’s J., May, 1992.Google Scholar
  6. 6.
    A. B. Prolubnikov and R. T. Faizulin, Matematicheskie struktury i modelirovanie [Mathematical Structures and Modelling], Omsk, Omsk Gos. Univ., 2002, Issue 9, 1 (in Russian).Google Scholar
  7. 7.
    A. B. Prolubnikov and R. T. Faizulin, Matematicheskie struktury i modelirovanie [Mathematical Structures and Modelling], Omsk, Omsk Gos. Univ., 2003, Issue 11, 28 (in Russian).Google Scholar
  8. 8.
    D. G. Corneil and C. C. Gotlieb, J. ACM, 1970, 17, 51.CrossRefGoogle Scholar
  9. 9.
    R. C. Read and D. G. Corneil, J. Graph Theory, 1977, 1, 339.Google Scholar
  10. 10.
    G. Gati, J. Graph Theory, 1979, 3, 95.Google Scholar
  11. 11.
    M. Meringer, J. Graph Theory, 1999, 30, 137.CrossRefGoogle Scholar
  12. 12.
    F. Harary, Graph Theory, Addison-Wesley, Massachusetts, 1969].Google Scholar
  13. 13.
    A. Kerber, R. Laue, T. Grüner, and M. Meringer, MATCH, 1998, 37, 205.Google Scholar
  14. 14.
    B. D. McKay, Congressus Numerantium, 1981, 30, 45.Google Scholar
  15. 15.
    I. A. Faradzhev, in Algoritmicheskie issledovaniya v kombinatorike [Algorithmic Studies in Combinatorics], Nauka, Moscow, 1978, 3 (in Russian).Google Scholar
  16. 16.
    MATCH, 1992, 27.Google Scholar
  17. 17.
    MATCH, 1998, 37.Google Scholar
  18. 18.
    M. S. Molchanova, V. V. Shcherbukhin, and N. S. Zefirov, J. Chem. Inf. Comput. Sci., 1996, 36, 888.CrossRefGoogle Scholar
  19. 19.
    D. Bonchev, O. Mekenyan, and N. Trinajstic’, J. Comp. Chem., 1981, 2, 127.Google Scholar
  20. 20.
    M. I. Trofimov, J. Math. Chem., 1991, 8, 327.CrossRefGoogle Scholar
  21. 21.
    W. Lipski, Kombinatoryka dla Programistow, Wydawnictwa Naukowo-Techniczne, Warzawa, 1982.Google Scholar
  22. 22.
    S. S. Tratch, M. I. Stankevitch, and N. S. Zefirov, J. Comp. Chem., 1990, 11, 899.Google Scholar
  23. 23.
    R. Sedgewick, Algorithms in C. Part 5. Graph Algorithms, 3rd ed., Addison-Wesley, Boston, 2003.Google Scholar
  24. 24.
    E. A. Smolenskii, Dokl. Akad. Nauk, 2001, 380, 60 [Dokl. Chem., 2001 (Engl. Transl.)].Google Scholar
  25. 25.
    E. A. Smolenskii, Zh. Vychisl. Matem. Matem. Fiz. [J. Comput. Math. Math. Phys.], 1962, 2, 371 (in Russian).Google Scholar
  26. 26.
    V. J. Rayward-Smith, A First Course in Formal Language Theory, Blackwell Scientific Publications, Oxford, 1983.Google Scholar
  27. 27.
    I. N. Bronshtein and K. A. Semendyaev, Spravochnik po matematike dlya inzhenerov i uchashchikhsya vuzov [Handbook of Mathematics for Engineers and Students], 13th ed., Nauka, Moscow, 1986, 492, 493 (in Russian).Google Scholar
  28. 28.
    A. A. Zykov, Osnovy teorii grafov [Fundamentals of Graph Theory], Vuz. Kniga, Moscow, 2004, 9 (in Russian).Google Scholar
  29. 29.
    M. I. Nechepurenko, V. K. Popkov, S. M. Mainagashev, S. B. Kaul’, V. A. Proskuryakov, V. A. Kokhov, and A. B. Gryzunov, Algoritmy i programmy resheniya zadach na grafakh i setyakh [Algorithms and Programs for Solving Problems on Graphs and Networks], Nauka, Novosibirsk, 1990, 16 (in Russian).Google Scholar
  30. 30.
    D. E. Knuth, The Art of Computer Programming, 1, Fundamental Algorithms, Addison-Wesley, Massachusetts, 1968.Google Scholar
  31. 31.
    V. N. Kas’yanov and V. A. Evstigneev, Grafy v programmirovanii: obrabotka, vizualizatsiya i primenenie [Graphs in Programming: Processing, Visualization, and Applications], BHV-Petersburg, St.-Petersburgh, 2003, 1015 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. I. Trofimov
    • 1
  • E. A. Smolenskii
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations