Advertisement

Russian Chemical Bulletin

, Volume 54, Issue 3, pp 576–587 | Cite as

Palladium-catalyzed activation of E-E and C-E bonds in diaryl dichalcogenides (E = S, Se) under microwave irradiation conditions

  • V. P. Ananikov
  • N. V. Orlov
  • I. P. Beletskaya
Article

Abstract

The first example of palladium-catalyzed stereoselective addition of diphenyl disulfide and diphenyl diselenide to the triple bond of terminal alkynes under microwave irradiation conditions is described. It was found that both the element—element (E-E) and carbon—element bonds can be activated in the catalytic system studied. The products of both reactions were isolated in quantitative yields. According to quantum-chemical calculations, the reaction mechanism involves the oxidative addition of the E-E bond to Pd0. Depending on the microwave power and reaction conditions, the next stage is either the reaction with alkyne or the carbon—element bond activation. The product of the oxidative addition of Ph2Se2 to Pd0, namely, dinuclear complex [Pd2(SePh)4(PPh32], was detected by 31P{1H}NMR spectroscopy directly in the Ph2Se2/PPh3 melt formed under microwave irradiation conditions.

Key words

palladium complexes catalysis microwave irradiation diaryl dichalcogenides element—element bond activation carbon—element bond activation alkynes vinyl sulfides vinyl selenides quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Larhed, C. Moberg, and A. Hallberg, Acc. Chem. Res., 2002, 35, 717.CrossRefPubMedGoogle Scholar
  2. 2.
    K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025.CrossRefPubMedGoogle Scholar
  3. 3.
    R. S. Varma, Pure Appl. Chem., 2001, 73, 193.Google Scholar
  4. 4.
    J. O. Metzger, Angew. Chem., Int. Ed. Engl., 1998, 37, 2975.Google Scholar
  5. 5.
    A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault, and D. Mathe, Synthesis, 1998, 1213.Google Scholar
  6. 6.
    I. V. Tselinskii, A. A. Astrat’ev, and A. S. Brykov, Zh. Obshch. Khim., 1996, 66, 1699 [Russ. J. Gen. Chem., 1996, 66 (Engl. Transl.)].Google Scholar
  7. 7.
    V. P. Ananikov and I. P. Beletskaya, Org. Biomol. Chem., 2004, 2, 284.CrossRefPubMedGoogle Scholar
  8. 8.
    V. P. Ananikov and I. P. Beletskaya, Izv. Akad. Nauk. Ser. Khim., 2004, 534 [Russ. Chem. Bull., Int. Ed., 2004, 53, 561].Google Scholar
  9. 9.
    H. Kuniyasu, A. Ogawa, S. I. Miyazaki, I. Ryu, N. Kambe, and N. Sonoda, J. Am. Chem. Soc., 1991, 113, 9796.CrossRefGoogle Scholar
  10. 10.
    A. Ogawa, J. Organomet. Chem., 2000, 611, 463.CrossRefGoogle Scholar
  11. 11.
    V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, G. G. Aleksandrov, and I. L. Eremenko, J. Organomet. Chem., 2003, 687, 451.CrossRefGoogle Scholar
  12. 12.
    V. P. Ananikov, I. P. Beletskaya, G. G. Aleksandrov, and I. L. Eremenko, Organometallics, 2003, 22, 1414.CrossRefGoogle Scholar
  13. 13.
    R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgren, J. Organomet. Chem., 2001, 623, 168.CrossRefGoogle Scholar
  14. 14.
    R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgren, J. Organomet. Chem., 1999, 587, 200.CrossRefGoogle Scholar
  15. 15.
    I. Nakanishi, S. Tanaka, K. Matsumoto, and S. Ooi, Acta Crystallogr., Sect. C., 1994, 50, 58.Google Scholar
  16. 16.
    M. S. Hannu-Kuure, K. Paldan, R. Oilunkaniemi, R. S. Laitinen, and M. Ahlgren, J. Organomet. Chem., 2003, 687, 538.CrossRefGoogle Scholar
  17. 17.
    A. D. Becke, Phys. Rev. A, 1988, 38, 3098.CrossRefPubMedGoogle Scholar
  18. 18.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  19. 19.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  20. 20.
    P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.CrossRefGoogle Scholar
  21. 21.
    W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.CrossRefGoogle Scholar
  22. 22.
    P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.CrossRefGoogle Scholar
  23. 23.
    T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer, III, Vol. 3, Plenum, New York, 1976, 1.Google Scholar
  24. 24.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 1971, 54, 724.CrossRefGoogle Scholar
  25. 25.
    G. Orlova and J. D. Goddard, J. Phys. Chem. A, 1999, 103, 6825.CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Rev. C. 1, Gaussian, Inc., Pittsburgh (PA), 2003.Google Scholar
  27. 27.
    G. Schaftenaar and J. H. Noordik, J. Comput. Aided Mol. Des., 2000, 14, 123.CrossRefPubMedGoogle Scholar
  28. 28.
    A. Dedieu, Chem. Rev., 2000, 100, 543.CrossRefPubMedGoogle Scholar
  29. 29.
    D. G. Musaev and K. Morokuma, Top. Catal., 1999, 7, 107.CrossRefGoogle Scholar
  30. 30.
    N. Koga and K. Morokuma, Chem. Rev., 1991, 91, 823.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. P. Ananikov
    • 1
  • N. V. Orlov
    • 1
  • I. P. Beletskaya
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations