Russian Chemical Bulletin

, Volume 54, Issue 1, pp 173–188 | Cite as

Synthesis and physicochemical study of NiII complexes with tetradentate acyclic and macrocyclic N2S2 ligands as thiosalen analogs

  • K. P. Butin
  • A. A. Moiseeva
  • E. K. Beloglazkina
  • Yu. B. Chudinov
  • A. A. Chizhevskii
  • A. V. Mironov
  • B. N. Tarasevich
  • A. V. Lalov
  • N. V. Zyk
Article

Abstract

N,N’-Polymethylenebis(thiosalicylidene)iminate and macrocyclic dithiadiazadibenzocycloalkadiene complexes of nickel(II) were synthesized and their electrochemical and spectroscopic properties were studied. Dithiadiazadibenzocycloalkadiene complexes containing two DMSO molecules coordinated to Ni2+ and two outer-sphere ClO4 anions were synthesized by the reaction of the corresponding macrocyclic ligands with Ni(ClO4)2·6H2O. The structure of 3,6-dithia-10,14-diazadibenzo[a,g]cyclopentadeca-9,14-dienylnickel(II)[bis(dimethyl sulfoxide) bis-perchlorate] was established by X-ray diffraction. The UV-Vis spectroscopic data are consistent with octahedral structures of diiminobis(sulfide) complexes, a square-planar structure of the thiosalen complex, and distorted tetrahedral structures of other diiminodithiolate complexes. The reaction of S-tert-butylthiosalicylaldehyde with hydrazine hydrate afforded di(ortho-tert-butylthiobenzal)azine. The reaction of the latter with anhydrous NiCl2 produced a colored complex with the simplest molecular formula Ni(C16H12N2S2) in 15% yield. Semiempirical PM3(tm) calculations and the results of UV-Vis, ESR, and 1H NMR spectroscopy demonstrate that this complex has most probably a dimeric structure, in which two Ni centers adopt a nearly square-planar configuration. The complexes are clearly divided into two types according to their electrochemical behavior in DMF solutions. The type 1 is characterized by reversibility of the first reduction steps. The type 2 is characterized by irreversible two-electron reduction as the first step accompanied by deposition of Ni metal on the electrode surface. Rapid electrochemically initiated alkylation occurs in the presence of various alkylating agents (BunI, BunBr, (DmgH)2CoCH3) in a solution of complex 1 in DMF.

Key words

nickel(IIthiosalen homoleptic thiosalen complexes diiminobis(sulfide) complexes macrocyclic S,S-alkylidenethiosalicylimines electrochemistry UV-Vis spectroscopy 3,6-dithia-10,14-diazadibenzo[a,g]cyclopentadeca-9,14-dienylnickel(II) bis-dimethyl sulfoxide bis-perchlorate crystal and molecular structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Calligaris and L. Randaccio, in Comprehensive Coordination Chemistry, Eds G. Wilkinson, and R. D. Gillard, Pergamon, Oxford, 1987, 2, Ch. 20.Google Scholar
  2. 2.
    A. K. Jorgensen, Chem. Rev., 1989, 89, 431.CrossRefGoogle Scholar
  3. 3.
    P. J. Pospisil, D. H. Carsten, and E. N. Jacobsen, Chem. Eur. J., 1996, 2, 744 (and references cited therein).Google Scholar
  4. 4.
    K. P. Bryliakov and E. P. Talsi, Inorg. Chem., 2003, 42, 7258.CrossRefPubMedGoogle Scholar
  5. 5.
    T. Fukuda and L. Katsuki, Tetrahedron, 1997, 53, 7201.CrossRefGoogle Scholar
  6. 6.
    J. Du Bois, C. S. Tomooka, J. Hong, and E. M. Carreira, Acc. Chem. Res., 1997, 30, 364.CrossRefGoogle Scholar
  7. 7.
    C. Bolm and F. Bienewald, Angew. Chem., Int. Ed. Engl., 1995, 34, 2640.Google Scholar
  8. 8.
    T. Fukuda and L. Katsuki, Tetrahedron Lett., 1997, 38, 3435.CrossRefGoogle Scholar
  9. 9.
    S. E. Schaus, J. Branalt, and E. N. Jacobsen, J. Org. Chem., 1998, 63, 403.CrossRefGoogle Scholar
  10. 10.
    M. D. Kaufman, P. A. Greico, and D. W. Bougie, J. Am. Chem. Soc., 1993, 115, 11648.CrossRefGoogle Scholar
  11. 11.
    J. F. Larrow and E. N. Jacobsen, J. Am. Chem. Soc., 1994, 116, 12129.CrossRefGoogle Scholar
  12. 12.
    K. Hamachi, R. Irie, and L. Katsuki, Tetrahedron Lett., 1996, 37, 4979.CrossRefGoogle Scholar
  13. 13.
    E. N. Jacobsen, F. Kakiuchi, R. G. Konsler, J. F. Larrow, and M. Tokunaga, Tetrahedron Lett., 1997, 38, 773.CrossRefGoogle Scholar
  14. 14.
    M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Science, 1997, 277, 936.Google Scholar
  15. 15.
    J. L. Leighton and E. N. Jacobsen, J. Org. Chem., 1996, 61, 389.CrossRefGoogle Scholar
  16. 16.
    L. E. Martinez, J. L. Leighton, D. H. Carsten, and E. N. Jacobsen, J. Am. Chem. Soc., 1995, 117, 5897.CrossRefGoogle Scholar
  17. 17.
    R. L. Puddock and S. T. Nguyen, J. Am. Chem. Soc., 2001, 123, 11498.CrossRefPubMedGoogle Scholar
  18. 18.
    J. M. Ready and E. N. Jacobsen, J. Am. Chem. Soc., 2001, 123, 403.CrossRefGoogle Scholar
  19. 19.
    A. A. Isse, A. Gennaro, and E. Vianello, J. Electroanal. Chem., 1998, 444, 241.CrossRefGoogle Scholar
  20. 20.
    V. G. Koshechko and V. D. Pokhodenko, Izv. Akad. Nauk, Ser. Khim., 2001, 1843 [Russ. Chem. Bull., Int. Ed., 2001, 50, 1929].Google Scholar
  21. 21.
    A. A. Stepanov, M. G. Peterleitner, S. M. Peregudova, and L. I. Denisovich, Elektrokhimiya, 2002, 38, 630 [Russ. J. Electrochem., 2002, 38 (Engl. Transl.)].Google Scholar
  22. 22.
    D. P. Riley, Chem. Rev., 1999, 99, 2573.CrossRefPubMedGoogle Scholar
  23. 23.
    V. K. Sivasubramanian, M. Ganesan, S. Rajagopal, and R. Ramaraj, J. Org. Chem., 2002, 67, 1506.CrossRefPubMedGoogle Scholar
  24. 24.
    A. Cristensen, H. S. Jensen, V. McKee, C. J. McKenzie, and M. Munch, Inorg. Chem., 1997, 36, 6080.CrossRefPubMedGoogle Scholar
  25. 25.
    D. S. Bohle, A. Zafar, P. A. Goodson, and D. A. Jaeger, Inorg. Chem., 2000, 39, 712.CrossRefPubMedGoogle Scholar
  26. 26.
    M. H. Chisholm, E. R. Davidson, J. C. Huffman, and K. B. Quinian, J. Am. Chem. Soc., 2001, 123, 9652.CrossRefPubMedGoogle Scholar
  27. 27.
    S. V. Kryatov, B. S. Mohanraj, V. V. Tarasov, O. P. Kryatova, and E. V. Rybak-Akimova, Inorg. Chem., 2002, 41, 923.CrossRefPubMedGoogle Scholar
  28. 28.
    N. Goswami and D. Eichhorn, Inorg. Chem., 1999, 38, 4329.CrossRefGoogle Scholar
  29. 29.
    M. F. Corrigan and B. O. West, Aust. J. Chem., 1976, 29, 1413.Google Scholar
  30. 30.
    B. Xie, L. Wilson, and D. Stanbury, Inorg. Chem., 2001, 40, 3606.CrossRefPubMedGoogle Scholar
  31. 31.
    T. Yamamura and M. Tadokoro, Chem. Lett., 1989, 7, 1245.Google Scholar
  32. 32.
    F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 1.Google Scholar
  33. 33.
    J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.CrossRefGoogle Scholar
  34. 34.
    M. Vilas-Boas, C. Freire, B. de Castro, P. A. Christensen, and A. R. Hillman, Inorg. Chem., 1997, 36, 4919.CrossRefGoogle Scholar
  35. 35.
    G. Music, J. H. Riebenspies, and M. Y. Darensbourg, Inorg. Chem., 1998, 37, 302.CrossRefGoogle Scholar
  36. 36.
    K. P. Butin, R. D. Rakhimov, and I. G. Il’ina, Izv. Akad. Nauk, Ser. Khim., 1999, 71 [Russ. Chem. Bull., Int. Ed., 1999, 49, 71].Google Scholar
  37. 37.
    K. W. Muir, Molecular Structure by Diffraction Methods, Vol. 1, Chemical Society, London, 1973, p. 580.Google Scholar
  38. 38.
    E. K. Beloglazkina, A. A. Moiseeva, A. V. Churakov, I. S. Orlov, N. V. Zyk, J. A. K. Howard, and K. P. Butin, Izv. Akad. Nauk, Ser. Khim., 2002, 436 [Russ. Chem. Bull., Int. Ed., 2002, 51, 467].Google Scholar
  39. 39.
    H. S. Kasmai and S. G. Tadokoro, Synthesis, 1989, 763.Google Scholar
  40. 40.
    D. Leaver, J. Smolicz, and W. H. Stafford, J. Chem. Soc., 1962, 740.Google Scholar
  41. 41.
    L. G. Akselrud, Yu. N. Gryn, P. V. Zavalij, V. K. Pecharsky, and V. S. Fundamensky, Abstrs of the 12th European Crystallographic Meeting, Moscow, 1989, p. 155.Google Scholar
  42. 41.
    V. Petricek and M. Dusek, Jana2000. The Crystallographic Computing System, Institute of Physics, Praha, Czech Republic, 2000.Google Scholar
  43. 42.
    L. Lindoy and R. Smith, Inorg. Chem., 1981, 20, 1314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • K. P. Butin
    • 1
  • A. A. Moiseeva
    • 1
  • E. K. Beloglazkina
    • 1
  • Yu. B. Chudinov
    • 1
  • A. A. Chizhevskii
    • 1
  • A. V. Mironov
    • 1
  • B. N. Tarasevich
    • 1
  • A. V. Lalov
    • 2
  • N. V. Zyk
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations