Russian Journal of Bioorganic Chemistry

, Volume 31, Issue 6, pp 567–575 | Cite as

Application of the Duplex-Specific Nuclease Preference Method to the Analysis of Single Nucleotide Polymorphisms in Human Genes

  • I. M. Altshuler
  • P. A. Zhulidov
  • E. A. Bogdanova
  • N. N. Mudrik
  • D. A. Shagin
Article

Abstract

A new modification of the single nucleotide polymorphism (SNP) analysis (DSNP, duplex-specific nuclease preference) method using the duplex-specific nuclease from the king crab was proposed. The method was used to study SNPs in the following human genes: kRAS, nRAS, hRAS, and p53, the genes of blood coagulation factor V, methyltetrahydrofolate reductase, prothrombin, and apolipoprotein E and a deletion in the BRCA1 gene. DSNP was shown to be useful for the estimation of the mutant allele content in DNA samples. A system for the simultaneous identification of several adjacent single-nucleotide polymorphisms in the kRAS gene was proposed. The approaches could be used to develop test systems for the detection of SNPs in human genes.

Key words

DSNP method duplex-specific nuclease single-nucleotide polymorphism 

Abbreviations

DABCYL

4-((4-(dimethylamino)phenyl)azo)benzoic acid

DSN

duplex-specific nuclease

DSNP

duplex-specific nuclease preference method (analysis of oligonucleotide polymorphisms using duplex-specific nuclease)

FAM

5-carboxyfluorescein

FRET

resonance transfer of fluorescence energy

MTHFR

the methyltetrahydrofolate reductase gene

SNP

single nucleotide polymorphism

TAMPA

5-carboxytetramethylrhodamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Risch, N. and Merikangas, K., Science, 1996, vol. 273, pp. 1516–1517.PubMedGoogle Scholar
  2. 2.
    Brookes, A.J., Gene, 1999, vol. 234, pp. 177–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., Shaw, N., Lane, C.R., Lim, E.P., Kalyanaraman, N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A., Warrington, J., Lipshutz, R., Daley, G.Q., and Lander, E.S., Nat. Genet., 1999, vol. 22, pp. 231–238.PubMedGoogle Scholar
  4. 4.
    Kruglyak, L., Nat. Genet., 1999, vol. 22, pp. 139–144.PubMedCrossRefGoogle Scholar
  5. 5.
    McCarthy, J.J. and Hilfiker, R., Nat. Biotechnol., 2000, vol. 18, pp. 505–508.PubMedCrossRefGoogle Scholar
  6. 6.
    Housman, D. and Ledley, F.D., Nat. Biotechnol., 1998, vol. 16, pp. 492–493.PubMedGoogle Scholar
  7. 7.
    Roses, A.D., Hum. Mol. Genet., 2001, vol. 10, pp. 2261–2267.PubMedCrossRefGoogle Scholar
  8. 8.
    Nielsena, R., Genetics, 2000, vol. 154, pp. 931–942.Google Scholar
  9. 9.
    Hacia, J.G., Fan, J.B., Ryder, O., Jin, L., Edgemon, K., Ghandour, G., Mayer, R.A., et al., Nat. Genet., 1999, vol. 22, pp. 164–167.PubMedGoogle Scholar
  10. 10.
    Landegren, U., Nilsson, M., and Kwok, P.Y., Genome Res., 1998, vol. 8, pp. 769–776.PubMedGoogle Scholar
  11. 11.
    Kwok, P.Y. and Ming, X., Human Mutation, 2004, vol. 23, pp. 442–446.PubMedCrossRefGoogle Scholar
  12. 12.
    Syvanen, A.C. and Taylor, G.R., Human Mutation, 2004, vol. 23, pp. 401–405.PubMedGoogle Scholar
  13. 13.
    Kwok, P.Y., Pharmacogenomics, 2000, vol. 1, pp. 95–100.PubMedGoogle Scholar
  14. 14.
    Syvanen, A.C., Nat. Rev. Genet., 2001, vol. 2, pp. 930–942.PubMedGoogle Scholar
  15. 15.
    Huang, J.X., Mehrens, D., Wiese, R., Lee, S., Tam, S.W., Daniel, S., Gilmore, J., Shi, M., and Lashkari, D., Clinical Chemistry, 2001, vol. 47, pp. 1912–1916.PubMedGoogle Scholar
  16. 16.
    Wakai, J., Takagi, A., Nakayama, M., Miya, T., Miyahara, T., Iwanaga, T., Takenaka, S., Ikeda, Y., and Amano, M., Nucleic Acids Res., 2004, vol. 32, p. 141.CrossRefGoogle Scholar
  17. 17.
    Shagin, D.A., Rebrikov, D.V., Kozhemyako, V.B., Altshuler, I.M., Shcheglov, A.S., Zhulidov, P.A., Bogdanova, E.A., Staroverov, D.B., Rasskazov, V.A., and Lukyanov, S., Genome Res., 2002, vol. 12, pp. 1935–1942.PubMedCrossRefGoogle Scholar
  18. 18.
    Langan, R.C., J. Am. Board Fam. Pract., 2004, vol. 17, pp. 306–308.PubMedCrossRefGoogle Scholar
  19. 19.
    Kurata, M. and Horii, I., J. Toxicol. Sci., 2004, vol. 29, pp. 13–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Kirke, P.N., Mills, J.L., Molloy, A.M., Brody, L.C., O'Leary, V.B., Daly, L., Murray, S., Conley, M., Mayne, P.D., Smith, O., and Scott, J.M., BMJ, 2004, vol. 328, pp. 1535–1536.PubMedCrossRefGoogle Scholar
  21. 21.
    Itzhaki, R., Herpes, 2004, vol. 11,Suppl. 2, pp. 77A–82A.PubMedGoogle Scholar
  22. 22.
    Mu, D.Q., Peng, Y.S., and Xu, Q.J., World J. Gastroenterol., 2004, vol. 10, pp. 471–475.PubMedGoogle Scholar
  23. 23.
    Yoshida, T., Ohnami, S., and Aoki, K., Cancer Sci., 2004, vol. 95, pp. 283–289.PubMedGoogle Scholar
  24. 24.
    Mesaeli, N. and Phillipson, C., Mol. Biol. Cell, 2004, vol. 15, pp. 1862–1870.PubMedCrossRefGoogle Scholar
  25. 25.
    Thull, D.L. and Vogel, V.G., Oncologist, 2004, vol. 9, pp. 13–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsun, L.C., Wei, Z., Suet, Y.L., and Siu, T.Y., Cancer Res., 2003, vol. 63, pp. 4878–4881.Google Scholar
  27. 27.
    Stewart, C.A., Horton, R., Allcock, R.J.N., Ashurst, J.L., Atrazhev, A.M., Coggill, P., Dunham, I., et al., Genome Res., 2004, vol. 14, pp. 1176–1187.PubMedCrossRefGoogle Scholar
  28. 28.
    Itabashi, T., Maesawa, C., Uchiyama, M., Higuchi, T., and Masuda, T., Int. J. Oncol., 2004, vol. 24, pp. 687–696.PubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • I. M. Altshuler
    • 1
  • P. A. Zhulidov
    • 2
  • E. A. Bogdanova
    • 2
  • N. N. Mudrik
    • 2
  • D. A. Shagin
    • 2
  1. 1.ZAO EvrogenMoscowRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations