Research on Language and Computation

, Volume 7, Issue 1, pp 41–54 | Cite as

Monadic Second-Order Logic and Transitive Closure Logics Over Trees

  • Hans-Jörg Tiede
  • Stephan Kepser


Model theoretic syntax is concerned with studying the descriptive complexity of grammar formalisms for natural languages by defining their derivation trees in suitable logical formalisms. The central tool for model theoretic syntax has been monadic second-order logic (MSO). Much of the recent research in this area has been concerned with finding more expressive logics to capture the derivation trees of grammar formalisms that generate non-context-free languages. The motivation behind this search for more expressive logics is to describe formally certain mildly context-sensitive phenomena of natural languages. Several extensions to MSO have been proposed, most of which no longer define the derivation trees of grammar formalisms directly, while others introduce logically odd restrictions. We therefore propose to consider first-order transitive closure logic. In this logic, derivation trees can be defined in a direct way. Our main result is that transitive closure logic, even deterministic transitive closure logic, is more expressive in defining classes of tree languages than MSO. (Deterministic) transitive closure logics are capable of defining non-regular tree languages that are of interest to linguistics.


Tree languages Monadic second-order logic Transitive closure logics Cross-serial dependencies Model theoretic syntax 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bargury Y., Makowsky J.A. (1992) The expressive power of transitive closue and 2-way multihead automata. In: Börger E., Jäger G., Büning H.K., Richter M.M. (eds) Computer science logic, CSL ’91, LNCS Vol. 626. Springer, Berlin, pp 1–14CrossRefGoogle Scholar
  2. Bresnan J., Kaplan R., Peters S., Zaenen A. (1987) Cross-serial dependencies in Dutch. In: Savitch W.J., Bach E., Marsh W., Safran-Naveh G. (eds) The formal complexity of natural language. Reidel, Dordrecht, pp 286–319Google Scholar
  3. Cornelle T., Rogers J. (2000) Model theoretic syntax. In: Cheng L., Sybesma R. (eds) The first GLOT international state-of-the article book, SGG (Vol. 48). Mouton de Gruyter, BerlinGoogle Scholar
  4. Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In Handbook of theoretical computer science (Vol. B). Amsterdam: Elsevier.Google Scholar
  5. Culy C. (1987) The complexity of the vocabulary of Bambara. In: Savitch W., Bach E., Marsch W., Safran-Naveh G. (eds) The formal complexity of natural language. Reidel, Dordrecht, pp 345–351Google Scholar
  6. Engelfriet J., Hoogeboom H.J. (2006) Nested pebbles and transitive closure. In: Durand B., Thomas W. (eds) STACS 2006, LNCS (Vol. 3884). Springer, Berlin, pp 477–488CrossRefGoogle Scholar
  7. Etessami K., Immerman N. (1995) Reachability and the power of local ordering. Theoretical Computer Science 148(2): 261–279CrossRefGoogle Scholar
  8. Fagin R. (1975) Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21: 89–96Google Scholar
  9. Huybregts R. (1984) The weak inadequacy of context–free phrase structure grammars. In: Haan G.J., Trommelen M., Zonneveld W. (eds) Van Periferie naar Kern. Foris, Dordrecht, pp 81–99Google Scholar
  10. Immerman N. (1999) Descriptive complexity. Springer, BerlinGoogle Scholar
  11. Kepser, S. (2006). Properties of binary transitive closure logic over trees. In P. Monachesi, G. Penn, G. Satta & S. Wintner (Eds.), Formal grammar (Vol. 2006, pp. 77–89).Google Scholar
  12. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Automata studies (pp. 3–41). Princeton, N. J.: Princeton University Press.Google Scholar
  13. Kolb H.-P., Michaelis J., Mönnich U., Morawietz F. (2003) An operational and denotational approach to non-context-freeness. Theoretical Computer Science 293(2): 261–289CrossRefGoogle Scholar
  14. Langholm T. (2001) A descriptive characterisation of indexed grammars. Grammars 4(3): 205–262CrossRefGoogle Scholar
  15. Lautemann C., Schwentick T., Thérien D. (1995) Logics for context-free languages. In: Pacholski L., Tiuryn J. (eds) Computer science logic CSL (Vol 1994). Springer, BerlinGoogle Scholar
  16. Lohrey M. (2001) On the parallel complexity of tree automata. In: Middeldorp A. (eds) Rewriting techniques and applications, RTA 2001, LNCS (Vol. 2051). Springer, Berlin, pp 201–215Google Scholar
  17. Lynch N. (1977) Log space recognition and translation of parenthesis languages. Journal of the ACM 24: 583–590CrossRefGoogle Scholar
  18. Mehlhorn K. (1976) Bracket languages are recognizable in logarithmic space. Information Processing Letter 5: 168–170CrossRefGoogle Scholar
  19. Moschovakis Y. (1974) Elementary induction on abstract structures. North-Holland Publishing Company, AmsterdamGoogle Scholar
  20. Potthoff, A. (1994). Logische Klassifizierung regulärer Baumsprachen. PhD thesis, Christian-Albrechts-Universität zu Kiel.Google Scholar
  21. Pullum G., Gazdar G. (1982) Natural languages and context-free languages. Linguistics and Philosophy 4: 471–504CrossRefGoogle Scholar
  22. Rogers J. (1998) A descriptive approach to language theoretic complexity. CSLI Publications, Stanford, CAGoogle Scholar
  23. Rogers J. (2003) Syntactic structures as multi-dimensional trees. Research on Language and Computation 1(3–4): 265–305CrossRefGoogle Scholar
  24. Rosenberg A. (1966) On multi-head finite automata. IBM Journal of Research and Development 10: 388–394CrossRefGoogle Scholar
  25. Shieber S. (1985) Evidence against the context-freeness of natural language. Linguistics and Philosophy 8: 333–343CrossRefGoogle Scholar
  26. ten Cate B., Segoufin L. (2008) XPath, transitive closure logic, and nested tree walking automata. In: Lenzerini M., Lembo D. (eds) Proceedings of ACM SIGMOD/PODS Conference. ACM, New YorkGoogle Scholar
  27. Thatcher J.W. (1967) Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences 1: 317–322Google Scholar
  28. Tiede H.-J. (2003) Model theoretic syntax and transitive closure logic. In: Libkin L., Penn G. (eds) LICS workshop on logic and computational linguistics. Canada, OttawaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceIllinois Wesleyan UniversityBloomingtonUSA
  2. 2.Collaborative Research Centre 441University of TübingenTübingenGermany

Personalised recommendations