Research on Language and Computation

, Volume 5, Issue 3, pp 267–285 | Cite as

Separating Syntax and Combinatorics in Categorial Grammar

Open Access
Article

Abstract

This paper argues that modern versions of categorial grammar and in particular multimodal categorial grammar can profit considerably from reintroducing Haskell Curry’s old distinction between what he called phenogrammatics and tectogrammatics. Tectogrammatics is the abstract way in which linguistic signs are built up, while phenogrammatics deals with concrete processes of string formation and the way in which the sign ultimately manifests itself. The distinction will be modeled in a theory called Lambda Grammars in which tectogrammatics is formalized by taking linear lambda terms over a given lexicon. Phenogrammatics can then be formalized with the help of a set of modal operators. The procedure is illustrated by means of an analysis of some aspects of Dutch word order that is based on earlier multimodal work of Oehrle and Moortgat on Dutch.

Keywords

Categorial grammar Lambda grammar 

References

  1. Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1, 1–27. English translation in S. McCall (ed.), Polish logic, 1920–1939, Oxford, 1967, 207–231.Google Scholar
  2. Bar-Hillel Y. (1953) A Quasi-arithmetical Notation for Syntactic Description. Language 29, 47–58CrossRefGoogle Scholar
  3. van Benthem J. (1986) Essays in logical semantics. Dordrecht: ReidelGoogle Scholar
  4. van Benthem, J. (1991). Language in action. Amsterdam: North-Holland.Google Scholar
  5. Curry, H. (1961). Some logical aspects of grammatical structure. In R. O. Jakobson (Ed.), Structure of language and its mathematical aspects, Vol. 12 of Symposia on applied mathematics (pp. 56–68). Providence: American Mathematical Society.Google Scholar
  6. Dalrymple, M., J. Lamping, & V. Saraswat (1993). LFG Semantics via Constraints. In Proceedings of the Sixth Meeting of the European ACL. European Chapter of the Association for Computational Linguistics.Google Scholar
  7. de Groote, P. (2001). Towards abstract categorial grammars. In Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference (pp. 148–155). Toulouse, France, ACL.Google Scholar
  8. de Groote, P. (2002). Tree-adjoining grammars as abstract categorial grammars. In TAG+6, Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Frameworks (pp. 145–150).Google Scholar
  9. Dowty D. (1982) Grammatical relations and montague grammar. In: Jacobson P., Pullum G. (eds). The nature of syntactic representation. Dordrecht, Reidel, pp. 79–130Google Scholar
  10. Dowty D. (1995) Toward a minimalist theory of syntactic structure. In: Bunt H., van Horck A. (eds). Syntactic discontinuity (pp. 11–62). The Hague, Mouton. (Paper originally presented at a 1989 conference).Google Scholar
  11. Groenendijk, J., & M. Stokhof (1984). Studies on the semantics of questions and the pragmatics of answers. Ph.D. thesis, University of Amsterdam.Google Scholar
  12. Heim I. (1992) Presupposition projection and the semantics of attitude verbs. Journal of Semantics 9, 183–221CrossRefGoogle Scholar
  13. Johnson, M. (1991). Logic and feature structures. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence. Sydney, Australia.Google Scholar
  14. Kaplan R., Bresnan J. (1982) Lexical-functional grammar: A formal system for grammatical representation. In: Bresnan J. (eds). The mental representation of grammatical relations. Cambridge, MA: The MIT Press, pp. 173–281Google Scholar
  15. Kratzer A. (1977) What “must” and “can” must and can mean. Linguistics and Philosophy 1, 337–355CrossRefGoogle Scholar
  16. Kurtonina, N. (1995). Frames and labels: A modal analysis of categorial inference. Ph.D. thesis, Institute for Logic, Language and Computation, Amsterdam.Google Scholar
  17. Lambek J. (1958) The mathematics of sentence structure. American Mathematical Monthly 65, 154–170CrossRefGoogle Scholar
  18. Marcus, M., D. Hindle, & M. Fleck. (1983). D-theory: talking about talking about trees. In Proceedings of the 21st ACL (pp. 129–136).Google Scholar
  19. Moortgat, M. (1997). Categorial type logics. In J. v. Benthem & A. t. Meulen (Eds.), Handbook of Logic and Language (pp. 93–177). Elsevier.Google Scholar
  20. Moortgat, M. (1999). Meaningful patterns. In JFAK, essays dedicated to Johan van Benthem on the occasion of his 50th birthday. Vossiuspers/Amsterdam University Press. CD-Rom.Google Scholar
  21. Moortgat, M., & R. Oehrle (1993). Adjacency, dependency and order. In P. Dekker & M. Stokhof (Eds.), Proceedings of the 9th Amsterdam Colloquium (pp. 447–466). Amsterdam: ILLC/Department of Philosophy, University of Amsterdam.Google Scholar
  22. Morrill G. (1994) Type logical grammar: Categorial logic of signs. Dordrecht: KluwerGoogle Scholar
  23. Muskens R. (1995) Meaning and partiality. Stanford: CSLIGoogle Scholar
  24. Muskens, R. (2001a). Categorial grammar and lexical-functional grammar. In M. Butt & T. H. King (Eds.), Proceedings of the LFG01 Conference, University of Hong Kong (pp. 259–279). Stanford CA. CSLI Publications. http://cslipublications.stanford.edu/LFG/6/lfg01.html.
  25. Muskens, R. (2001b). Lambda grammars and the syntax-semantics interface. In R. van Rooy & M. Stokhof (Eds.), Proceedings of the Thirteenth Amsterdam Colloquium (pp. 150–155). Amsterdam.Google Scholar
  26. Muskens, R. (2003). Language, lambdas, and logic. In G.-J. Kruijff & R. Oehrle (Eds.), Resource sensitivity in binding and anaphora, Studies in linguistics and philosophy (pp. 23–54). Kluwer.Google Scholar
  27. Oehrle R. (1988). Multi-dimensional compositional functions as a basis for grammatical analysis. In: Oehrle R., Bach E., Wheeler D. (eds). Categorial grammars and natural language structures. Dordrecht, Reidel, pp. 349–389Google Scholar
  28. Oehrle R. (1994) Term-labeled categorial type systems. Linguistics and Philosophy 17, 633–678CrossRefGoogle Scholar
  29. Oehrle R. (1995) Some 3-dimensional systems of labelled deduction. Bulletin of the IGPL 3, 429–448CrossRefGoogle Scholar
  30. Oehrle, R. (1998). Multi-modal type-logical grammar. In R. Borsley & K. Borjars (Eds.), Non-transformational Syntax. Blackwell. to appear.Google Scholar
  31. Stalnaker R. (1984) Inquiry. Cambridge, MA: MIT PressGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of PhilosophyTilburg UniversityTilburgThe Netherlands

Personalised recommendations