Research on Language and Computation

, Volume 3, Issue 2–3, pp 391–410 | Cite as

Features Moving Madly: A Formal Perspective on Feature Percolation in the Minimalist Program


I show that adding a mechanism of feature percolation (via specifier head agreement) to Minimalist Grammars (MGs) [Stabler (1997) In Retore C. (ed.) Logical Aspects of Computational Linguistics, Springer Verlag (Lecture Notes in Computer Science 1328), NY, pp. 68–95] takes them out of the class of context-sensitive grammar formalisms. The main theorem of the paper is that adding a mechanism of feature percolation to MGs allows them to implement infinite abaci [Lambek (1961), Canadian Mathematical bulletin 4, pp. 259–302], which can simulate any Turing Machine computation. As a simple corollary, I show that, for any computable \(f\!:\mathbb{N} \rightarrow \mathbb{N}\), MGs thus enhanced can generate the language \(L_{a^{f(n)}} = \{ a^{f(n)} : n \in \mathbb{N}\}\).


feature percolation infinite abacus Minimalist Grammar register machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angluin, D. 1980Inductive Inference of Formal Languages from Positive DataInformation and Control45117135CrossRefGoogle Scholar
  2. Brody, M. 2000Mirror Theory; Syntactic Representation in Perfect SyntaxLinguistic Inquiry312956CrossRefGoogle Scholar
  3. Chomsky, N. 1993

    A Minimalist Program for Linguistic Theory

    Hale, K.Keyser, S.J. eds. The View from Building 20.MIT PressCambridge, MA
    Google Scholar
  4. Chomsky, N. 1995The Minimalist ProgramMIT PressCambridge, MAGoogle Scholar
  5. Chomsky, N. 2001

    Derivation by Phase

    Kenstowicz, M. eds. Ken Hale: A Life in LanguageMIT PressCambridge, MA152
    Google Scholar
  6. Frampton J., Gutmann S. (2000) Agreement is Feature Sharing, ms. Northeastern University.Google Scholar
  7. Frampton, J., Gutmann, S. 2002

    Crash-proof Syntax

    Epstein, S.D.Seely, T.D. eds. Derivation and Explanation in the Minimalist ProgramBlackwellOxford90105
    CrossRefGoogle Scholar
  8. Girard, J.-Y. 1987Linear LogicTheoretical Computer Science501102CrossRefGoogle Scholar
  9. Hallman, P. 2004Symmetry in Structure BuildingSyntax779100CrossRefGoogle Scholar
  10. Harkema, H. 2001

    A Characterization of Minimalist Grammars

    Groote, P.Morrill, G.Retoré, C. eds. Logical Aspects of Computational Linguistics (LACL 2001)Springer VerlagBerlin, Heidelberg, GermanyVol. 2099 of Lecture Notes in Artificial Intelligence
    Google Scholar
  11. Kanazawa M.: (1998) Learnable Classes of Categorial Grammars. CSLI Publications, Stanford University.Google Scholar
  12. Kobele G. M. (2002) Formalizing Mirror Theory. Grammars 5(3), pp. 177–221.Google Scholar
  13. Kobele G. M., Collier T., Taylor C. and Stabler E. P. (2002) Learning Mirror Theory. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+6), Venice.Google Scholar
  14. Koopman, H. 1996

    The Spec-head Configuration

    Edward Garrett, Felicia Lee,  eds. Syntax at Sunset: UCLA Working Papers in Syntax and SemanticsUCLA Department of LinguisticsLos Angeles
    Google Scholar
  15. Koopman, H., Szabolcsi, A. 2000Verbal ComplexesMIT PressCambridge, MAGoogle Scholar
  16. Lambek, J. 1961How to Program an (Infinite) AbacusCanadian Mathematical Bulletin4295302CrossRefGoogle Scholar
  17. Lecomte A., Retoré C. (1999) Towards a Minimal Logic for Minimalist Grammars. In: Proceedings, Formal Grammar’99. Utrecht.Google Scholar
  18. Michaelis, J. 1998

    Derivational Minimalism is Mildly Context-Sensitive

    Moortgat, M. eds. Logical Aspects of Computational Linguistics (LACL ’98)Springer VerlagBerlin, Heidelberg, GermanyVol. 2014 of Lecture Notes in Artificial Intelligence
    Google Scholar
  19. Michaelis, J. 2001

    Transforming Linear Context-Free Rewriting Systems into Minimalist Grammars

    Groote, P.Morrill, G.Retoré, C. eds. Logical Aspects of Computational Linguistics (LACL 2001)Springer VerlagBerlin, Heidelberg, GermanyVol. 2099 of Lecture Notes in Artificial Intelligence
    Google Scholar
  20. Minsky, M. 1961Recursive Unsolvability of Post’s Problem of ‘tag’ and Other Topics in Theory of Turing MachinesAnnals of Mathematics74437454CrossRefGoogle Scholar
  21. Moritz, L., Valois, D. 1994Pied-Piping and Specifier-Head AgreementLinguistic Inquiry25667707Google Scholar
  22. Neeleman, A., Koot, H. 2002The Configurational MatrixLinguistic Inquiry33529574CrossRefGoogle Scholar
  23. Retoré, C., Stabler, E.P. 2004Resource Logics and Minimalist GrammarsResearch on Language and Computation2325CrossRefGoogle Scholar
  24. Roberts, I. 1997Comparative SyntaxArnoldNew York, NYGoogle Scholar
  25. Ross J. R. (1967) Constraints on Variables in Syntax. PhD thesis, MIT. Published in 1986 as Infinite Syntax, Ablex.Google Scholar
  26. Stabler, E.P. 1994

    The Finite Connectivity of Linguistic Structure

    Clifton, C.Frazier, L.Rayner, K. eds. Perspectives on Sentence ProcessingLawrenceErlbaum, NJ303336
    Google Scholar
  27. Stabler, E.P. 1997

    Derivational Minimalism

    Retoré, C. eds. Logical Aspects of Computational LinguisticsSpringer-VerlagNY6895Lecture Notes in Computer Science 1328
    CrossRefGoogle Scholar
  28. Stabler, E.P., Keenan, E.L. 2003Structural Similarity within and Among LanguagesTheoretical Computer Science293345363CrossRefGoogle Scholar
  29. Vermaat, W. 2004The Minimalist Move Operation in a Deductive PerspectiveResearch on Language and Computation26985CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of LinguisticsUCLALos AngelesUSA

Personalised recommendations