Journal of Risk and Uncertainty

, Volume 52, Issue 1, pp 1–20 | Cite as

Measuring Loss Aversion under Ambiguity: A Method to Make Prospect Theory Completely Observable

  • Mohammed Abdellaoui
  • Han Bleichrodt
  • Olivier L’Haridon
  • Dennie van Dolder
Article

Abstract

We propose a simple, parameter-free method that, for the first time, makes it possible to completely observe Tversky and Kahneman’s (1992) prospect theory. While methods exist to measure event weighting and the utility for gains and losses separately, there was no method to measure loss aversion under ambiguity. Our method allows this and thereby it can measure prospect theory’s entire utility function. Consequently, we can properly identify properties of utility and perform new tests of prospect theory. We implemented our method in an experiment and obtained support for prospect theory. Utility was concave for gains and convex for losses and there was substantial loss aversion. Both utility and loss aversion were the same for risk and ambiguity, as assumed by prospect theory, and sign-comonotonic trade-off consistency, the central condition of prospect theory, held.

Keywords

Prospect theory Loss aversion Utility for gains and losses Risk Ambiguity Elicitation methods 

JEL Classifications

C91 D03 D81 

Notes

Acknowledgments

We gratefully acknowledge helpful comments from Aurélien Baillon, Ferdinand Vieider, Peter P. Wakker, Horst Zank, and an anonymous reviewer and financial support from the Erasmus Research Institute of Management, the Netherlands Organisation for Scientific Research (NWO), the Tinbergen Institute, Rennes Metropole district (AIS_2013), and the Economic and Social Research Council via the Network for Integrated Behavioral Sciences (award n. ES/K002201/1).

References

  1. Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46, 1497–1512.CrossRefGoogle Scholar
  2. Abdellaoui, M., Baillon, A., Placido, L., & Wakker, P. P. (2011). The rich domain of uncertainty: Source functions and their experimental implementation. American Economic Review, 101, 695–723.CrossRefGoogle Scholar
  3. Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Measuring loss aversion under prospect theory: A parameter-free approach. Management Science, 53, 1659–1674.CrossRefGoogle Scholar
  4. Abdellaoui, M., Vossmann, F., & Weber, M. (2005). Choice-based elicitation and decomposition of decision weights for gains and losses under uncertainty. Management Science, 51, 1384–1399.CrossRefGoogle Scholar
  5. Baltussen, G., Van den Assem, M., & Van Dolder, D. (forthcoming). Risky choice in the limelight. Review of Economics and Statistics.Google Scholar
  6. Barberis, N. C. (2013). Thirty years of prospect theory in economics: A review and assessment. Journal of Economic Perspectives, 27, 173–196.CrossRefGoogle Scholar
  7. Bardsley, N., Cubitt, R., Loomes, G., Moffatt, P., Starmer, C., & Sugden, R. (2010). Experimental economics: Rethinking the rules. Princeton and Oxford: Princeton University Press.Google Scholar
  8. Birnbaum, M. H., & Bahra, J. P. (2007). Gain-loss separability and coalescing in risky decision making. Management Science, 53, 1016–1028.CrossRefGoogle Scholar
  9. Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science, 46, 1485–1496.CrossRefGoogle Scholar
  10. Bleichrodt, H., Cillo, A., & Diecidue, E. (2010). A quantitative measurement of regret theory. Management Science, 56, 161–175.CrossRefGoogle Scholar
  11. Booij, A. S., & van de Kuilen, G. (2009). A parameter-free analysis of the utility of money for the general population under prospect theory. Journal of Economic Psychology, 30, 651–666.CrossRefGoogle Scholar
  12. Booij, A. S., van Praag, B. M. S., & van de Kuilen, G. (2010). A parametric analysis of prospect theory’s functionals for the general population. Theory and Decision, 68, 115–148.CrossRefGoogle Scholar
  13. Bostic, R., Herrnstein, R. J., & Luce, R. D. (1990). The effect on the preference reversal of using choice indifferences. Journal of Economic Behavior and Organization, 13, 193–212.CrossRefGoogle Scholar
  14. Bowman, D., Minehart, D., & Rabin, M. (1999). Loss aversion in a consumption-savings model. Journal of Economic Behavior and Organization, 38, 155–178.CrossRefGoogle Scholar
  15. Bruhin, A., Fehr-Duda, H., & Epper, T. (2010). Risk and rationality: Uncovering heterogeneity in probability distortion. Econometrica, 78, 1372–1412.Google Scholar
  16. Fox, C. R., & Poldrack, R. A. (2014). Prospect theory and the brain. In P. Glimcher, & E. Fehr (Eds.), Handbook of Neuroeconomics (2nd ed.) (pp. 533–567). New York: Elsevier.CrossRefGoogle Scholar
  17. Gaechter, S., Johnson, E. J., & Herrmann, A. (2007). Individual-level loss aversion in risky and riskless choice. IZA Discussion Paper No. 2961.Google Scholar
  18. Gajdos, T., Hayashi, T., Tallon, J. M., & Vergnaud, J. C. (2008). Attitude toward imprecise information. Journal of Economic Theory, 140, 27–65.CrossRefGoogle Scholar
  19. Ghirardato, P. & M. Marinacci (2001). Ambiguity Made Precise: A Comparative Foundation, Journal of Economic Theory, 102, 251–289Google Scholar
  20. Ghirardato, P., Maccheroni, F., & Marinacci, M. (2004). Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118, 133–173.CrossRefGoogle Scholar
  21. Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics, 18, 141–153.CrossRefGoogle Scholar
  22. Gul, F. (1991). A theory of disappointment aversion. Econometrica, 59, 667–686.CrossRefGoogle Scholar
  23. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  24. Köbberling, V., & Wakker, P. P. (2003). Preference foundations for nonexpected utility: A generalized and simplified technique. Mathematics of Operations Research, 28, 395–423.CrossRefGoogle Scholar
  25. Köbberling, V., & Wakker, P. P. (2005). An index of loss aversion. Journal of Economic Theory, 122, 119–131.CrossRefGoogle Scholar
  26. Köszegi, B., & Rabin, M. (2006). A model of reference-dependent preferences. Quarterly Journal of Economics, 121, 1133–1166.CrossRefGoogle Scholar
  27. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159–174.Google Scholar
  28. Luce, R. D (1991). Rank- and sign-dependent linear utility models for binary gambles. Journal of Economic Theory, 53, 75–100.Google Scholar
  29. Luce, R. D. (2000). Utility of gains and losses: Measurement-theoretical and experimental approaches. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  30. Neilson, W. S. (2002). Comparative risk sensitivity with reference-dependent preferences. Journal of Risk and Uncertainty, 24, 131–142.CrossRefGoogle Scholar
  31. Pennings, J. M. E., & Smidts, A. (2003). The shape of utility functions and organizational behavior. Management Science, 49, 1251–1263.CrossRefGoogle Scholar
  32. Pulford, B. D. (2009). Is luck on my side? Optimism, pessimism, and ambiguity aversion. The Quarterly Journal of Experimental Psychology, 62, 1079–1087.CrossRefGoogle Scholar
  33. Quiggin, J. (1981). Risk perception and risk aversion among Australian farmers. Australian Journal of Agricultural Economics, 25, 160–169.CrossRefGoogle Scholar
  34. Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3, 323–343.CrossRefGoogle Scholar
  35. Rabin, M. (2000). Risk aversion and expected-utility theory: A calibration theorem. Econometrica, 68, 1281–1292.CrossRefGoogle Scholar
  36. Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57, 571–587.CrossRefGoogle Scholar
  37. Stott, H. P. (2006). Cumulative prospect theory's functional menagerie. Journal of Risk and Uncertainty, 32, 101–130.CrossRefGoogle Scholar
  38. Sugden, R. (2003). Reference-dependent subjective expected utility. Journal of Economic Theory, 111, 172–191.CrossRefGoogle Scholar
  39. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.CrossRefGoogle Scholar
  40. Vieider, F. M., Cingl, L., Martinsson, P., & Stojic, H. (2013). Separating attitudes towards money from attitudes towards probabilities: Stake effects and ambiguity as a test for prospect theory. WZB Berlin: Working Paper.Google Scholar
  41. Viscusi, W. K. (1989). Prospective reference theory: Toward an explanation of the paradoxes. Journal of Risk and Uncertainty, 2, 235–264.CrossRefGoogle Scholar
  42. Viscusi, W. K., & Magat, W. A. (1992). Bayesian decisions with ambiguous belief aversion. Journal of Risk and Uncertainty, 5, 371–387.CrossRefGoogle Scholar
  43. Wakker, P. P. (2010). Prospect theory: For risk and ambiguity. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  44. Wakker, P. P., & Deneffe, D. (1996). Eliciting von Neumann-Morgenstern utilities when probabilities are distorted or unknown. Management Science, 42, 1131–1150.CrossRefGoogle Scholar
  45. Wakker, P. P., & Tversky, A. (1993). An axiomatization of cumulative prospect theory. Journal of Risk and Uncertainty, 7, 147–176.CrossRefGoogle Scholar
  46. Wu, G., & Markle, A. B. (2008). An empirical test of gain-loss separability in prospect theory. Management Science, 54, 1322–1335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohammed Abdellaoui
    • 1
  • Han Bleichrodt
    • 2
  • Olivier L’Haridon
    • 3
  • Dennie van Dolder
    • 4
  1. 1.HEC-Paris GREGHEC-CNRSJouy-en-JosasFrance
  2. 2.Erasmus School of EconomicsRotterdamNetherlands
  3. 3.Crem-Université de Rennes 1 & GREGHECRennesFrance
  4. 4.Nottingham School of EconomicsUniversity of NottinghamNottinghamUK

Personalised recommendations