Journal of Risk and Uncertainty

, Volume 48, Issue 1, pp 67–83 | Cite as

Prospect theory and the “forgotten” fourfold pattern of risk preferences

Article

Abstract

Markowitz (Journal of Political Economy 60:151–158, 1952) identified a fourfold pattern of risk preferences in outcome magnitude: When outcomes are large, people are risk averse in gains and risk seeking in losses, but risk preferences reverse when the outcomes are small, with people exhibiting risk seeking in gains and risk aversion in losses. This fourfold pattern was not addressed by either version of prospect theory (Kahneman and Tversky Econometrica 47:363–391, 1979; Tversky and Kahneman Journal of Risk and Uncertainty 5:297–323, 1992). We show how prospect theory can accommodate the pattern by combining an overweighting of low probabilities with a decreasingly elastic value function. We then examine the performance of prospect theory with two decreasingly elastic value functions: Prospect theory performs better, both quantitatively and qualitatively, with a normalized logarithmic value function than with a normalized exponential value function. We discuss several issues, and speculate about why Tversky and Kahneman did not address Markowitz’s fourfold pattern.

Keywords

Risk aversion Risk seeking Gains Losses Fourfold patterns of risk preferences Markowitz Prospect theory 

JEL Classifications

C51 C52 C91 D03 D90 

Notes

Acknowledgments

This work was supported by the Fundação para a Ciência e Tecnologia [project POCI 2010; grant numbers PTDC/PSI-PCO/101447/2008, PTDC/MHC-PCN/3805/2012], by the Economic and Social Research Council [grant number ES/K002201/1], and by the Leverhulme Trust [grant number RP2012-V-022]. Our article has greatly benefited from comments given by Peter Wakker.

References

  1. Abdellaoui, M. (2000). Parameter-free elicitation of utilities and probability weighting functions. Management Science, 46, 1497–1512.CrossRefGoogle Scholar
  2. Abdellaoui, M., Vossmann, F., & Weber, M. (2005). Choice-based elicitation and decomposition of decision weights for gains and losses under uncertainty. Management Science, 51, 1384–1399.CrossRefGoogle Scholar
  3. Abdellaoui, M., Bleichrodt, H., & L’Haridon, O. (2008). A tractable method to measure utility and loss aversion under prospect theory. Journal of Risk and Uncertainty, 36, 245–266.CrossRefGoogle Scholar
  4. Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’école Américaine. Econometrica, 21, 503–546.CrossRefGoogle Scholar
  5. al-Nowaihi, A., & Dhami, S. (2009). A value function that explains magnitude and sign effects. Economics Letters, 105, 224–229.CrossRefGoogle Scholar
  6. Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2010). Behavioral econometrics for psychologists. Journal of Economic Psychology, 31, 553–576.CrossRefGoogle Scholar
  7. Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii academiae scientiarum imperialis petropolitanae. Translated, Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Econometrica, 22, 23–36.Google Scholar
  8. Blavatskyy, P. R. (2005). Back to the St. Petersburg paradox? Management Science, 51, 677–678.CrossRefGoogle Scholar
  9. Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science, 46, 1485–1496.CrossRefGoogle Scholar
  10. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision-making in an uncertain environment. Psychological Review, 100, 432–459.CrossRefGoogle Scholar
  11. Camerer, C. (2005). Three cheers—psychological, theoretical, empirical—for loss aversion. Journal of Marketing Research, 42, 129–133.CrossRefGoogle Scholar
  12. Camerer, C. F., & Ho, T.–H. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8, 167–196.Google Scholar
  13. Donkers, B., Melenberg, B., & van Soest, A. (2001). Estimating risk attitudes using lotteries: A large sample approach. Journal of Risk and Uncertainty, 22, 165–195.CrossRefGoogle Scholar
  14. Fehr-Duda, H., Bruhin, A., Epper, T., & Schubert, R. (2010). Rationality on the rise: Why relative risk aversion increases with stake size. Journal of Risk and Uncertainty, 40, 147–180.CrossRefGoogle Scholar
  15. Fennema, H., & van Assen, M. A. L. M. (1998). Measuring the utility of losses by means of the tradeoff method. Journal of Risk and Uncertainty, 17, 277–295.CrossRefGoogle Scholar
  16. Hayden, B. Y., & Platt, M. L. (2009). The mean, the median, and the St. Petersburg Paradox. Judgment and Decision Making, 4, 256–273.Google Scholar
  17. Hershey, J. C., & Schoemaker, P. J. H. (1980). Prospect theory’s reflection hypothesis: A critical examination. Organizational Behavior and Human Performance, 25, 395–418.CrossRefGoogle Scholar
  18. Hogarth, R. M., & Einhorn, H. J. (1990). Venture theory: A model of decision weights. Management Science, 36, 780–803.CrossRefGoogle Scholar
  19. Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92, 1644–1655.CrossRefGoogle Scholar
  20. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 363–391.CrossRefGoogle Scholar
  21. Kahneman, D., & Tversky, A. (1982). The psychology of preferences. Scientific American, 248, 163–169.Google Scholar
  22. Kirby, K. N. (2011). An empirical assessment of the form of utility functions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 461–476.Google Scholar
  23. Köbberling, V., & Wakker, P. P. (2005). An index of loss aversion. Journal of Economic Theory, 122, 119–131.CrossRefGoogle Scholar
  24. Kontek, K. (2011). On mental transformations. Journal of Neuroscience, Psychology, and Economics, 4, 235–253.CrossRefGoogle Scholar
  25. Loewenstein, G., & Prelec, D. (1992). Anomalies in intertemporal choice: Evidence and an interpretation. Quarterly Journal of Economics, 107, 573–597.CrossRefGoogle Scholar
  26. Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York, NY: Wiley.Google Scholar
  27. Markowitz, H. (1952). The utility of wealth. Journal of Political Economy, 60, 151–158.CrossRefGoogle Scholar
  28. Mullet, E. (1992). The probability + utility rule in attractiveness judgments of positive gambles. Organizational Behavior and Human Decision Processes, 52, 246–255.CrossRefGoogle Scholar
  29. Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90–100.CrossRefGoogle Scholar
  30. Prelec, D. (1998). The probability weighting function. Econometrica, 66, 497–527.CrossRefGoogle Scholar
  31. Prelec, D., & Loewenstein, G. (1991). Decision making over time and under uncertainty: A common approach. Management Science, 37, 770–786.CrossRefGoogle Scholar
  32. Rachlin, H. (1992). Diminishing marginal value as delay discounting. Journal of the Experimental Analysis of Behavior, 57, 407–415.CrossRefGoogle Scholar
  33. Rieger, M. O., & Wang, M. (2006). Cumulative prospect theory and the St. Petersburg paradox. Economic Theory, 28, 665–679.CrossRefGoogle Scholar
  34. Samuelson, P. A. (1977). St. Petersburg Paradoxes: Defanged, dissected and historically described. Journal of Economic Literature, 15, 24–55.Google Scholar
  35. Schoemaker, P. J. H. (1982). The expected utility model: Its variants, purposes, evidence, and limitations. Journal of Economic Literature, 20, 529–563.Google Scholar
  36. Schoemaker, P. J. H. (1990). Are risk-attitudes related across domains and response modes? Management Science, 36, 1451–1463.CrossRefGoogle Scholar
  37. Scholten, M., & Read, D. (2010). The psychology of intertemporal tradeoffs. Psychological Review, 117, 925–944.CrossRefGoogle Scholar
  38. Scholten, M., Read, D., & Sanborn, A. (2014). Weighing outcomes by time or against time? Evaluation rules in intertemporal choice. Cognitive Science. doi:10.1111/cogs.12104.
  39. StatSoft. (2003). Statistica (Version 6) [Computer software]. Tulsa, OK.Google Scholar
  40. Stott, H. P. (2006). Cumulative prospect theory’s functional menagerie. Journal of Risk and Uncertainty, 32, 101–130.CrossRefGoogle Scholar
  41. Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76, 31–48.CrossRefGoogle Scholar
  42. Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102, 269–283.CrossRefGoogle Scholar
  43. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.CrossRefGoogle Scholar
  44. Wu, G., & Gonzalez, R. (1996). Curvature of the probability weighting function. Management Science, 42, 1676–1690.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.European UniversityLisbonPortugal
  2. 2.Warwick Business SchoolCoventryUK

Personalised recommendations