Improving Pre-service Elementary Teachers’ Understanding of the Nature of Science Through an Analysis of the Historical Case of Rosalind Franklin and the Structure of DNA

  • Antonio García-CarmonaEmail author


This qualitative study analyses how effective an activity based on the critical and reflexive reading of the historical case of Rosalind Franklin and the elucidation of the molecular structure of DNA can be for learning about the nature of science (NOS). The aspects of NOS addressed are the plurality of methods in scientific research, research objectives, the strengths of scientific models and the epistemic and non-epistemic obstacles faced by scientists in the course of their research. The activity was implemented during a science teaching course for pre-service elementary teachers (PETs). The data were extracted from the PETs’ reports, analysing them with a rubric based on inter-rater agreement. The results showed the PETs to have overall improved their understanding of the different NOS aspects addressed, and that they gave more importance to non-epistemic than to epistemic factors. In short, the results showed this type of activity to be educationally effective in learning about NOS using cases from the history of science. They also lent support to the view that teaching NOS should take an equilibrated approach to both its epistemic and non-epistemic aspects.


DNA History of science Nature of science Pre-service elementary teacher Rosalind Franklin Science education 



The author would like to thank his colleague and friend José Antonio Acevedo-Díaz for his collaboration in the analysis of the data in this study.

Funding Information

This study was supported by the Ministry of Economy, Industry and Competitiveness (Government of Spain) under grant EDU2017-82505-P.


  1. Abd-El-Khalick, F. (2012). Nature of science in science education: Toward a coherent framework for synergistic research and development. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1041–1060). Dordrecht: Springer.CrossRefGoogle Scholar
  2. Abd-El-Khalick, F., & Lederman, N. G. (2000). The influence of history of science course on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057–1095.CrossRefGoogle Scholar
  3. Acevedo, J. A. & García-Carmona, A. (2016a). «Algo antiguo, algo nuevo, algo prestado». Tendencias sobre la naturaleza de la ciencia en la educación científica [«Something old, something new, something borrowed». Trends on the nature of science in science education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(1), 3–19.CrossRefGoogle Scholar
  4. Acevedo, J. A., & García-Carmona, A. (2016b). Rosalind Franklin y la estructura del ADN: un caso de historia de la ciencia para aprender sobre la naturaleza de la ciencia [Rosalind Franklin and the DNA molecular structure: A case of history of science to learn about the nature of science]. Revista Científica, 25, 162–175.CrossRefGoogle Scholar
  5. Acevedo-Díaz, J. A. & García-Carmona, A. (2017). Controversias en la historia de la ciencia y cultura científica [Controversies in history of science and scientific culture]. Madrid: Los Libros de la Catarata.Google Scholar
  6. Acevedo-Díaz, J. A., García-Carmona, A. & Aragón, M. M. (2017). Enseñar y aprender sobre naturaleza de la ciencia mediante el análisis de controversias de historia de la ciencia. Resultados y conclusiones de un proyecto de investigación didáctica [Teaching and learning about the nature of science through the analysis of controversies of history of science. Results and conclusions of a didactic research project]. Madrid: OEI.Google Scholar
  7. Adúriz-Bravo, A., & Izquierdo, M. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18(9), 1177–1192.CrossRefGoogle Scholar
  8. Akerson, V. L., & Donnelly, L. A. (2010). Teaching nature of science to K-2 students: What understandings can they attain? International Journal of Science Education, 32(1), 97–124.CrossRefGoogle Scholar
  9. Akerson, V. L., Morrison, J. A., & McDuffie, A. R. (2006). One course is not enough: Preservice elementary teachers' retention of improved views of nature of science. Journal of Research in Science Teaching, 43(2), 194–213.CrossRefGoogle Scholar
  10. Akerson, V. L., Buck, G. A., Donnelly, L. A., Nargund-Joshi, V., & Weiland, I. S. (2011). The importance of teaching and learning nature of science in the early childhood years. Journal of Science Education and Technology, 20(5), 537–549.CrossRefGoogle Scholar
  11. Allchin, D. (2003). Scientific myth-conceptions. Science Education, 87(3), 329–351.CrossRefGoogle Scholar
  12. Allchin, D. (2004). Pseudohistory and pseudoscience. Science & Education, 13(3), 179–195.CrossRefGoogle Scholar
  13. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.CrossRefGoogle Scholar
  14. Appleton, K. (2008). Developing science pedagogical content knowledge through mentoring elementary teachers. Journal of Science Teacher Education, 19(6), 523–545.CrossRefGoogle Scholar
  15. Aragón, M. M., García-Carmona, A., & Acevedo, J. A. (2016). Aprendizaje de estudiantes de secundaria sobre la naturaleza de la ciencia mediante el caso histórico de Semmelweis y la fiebre puerperal [Secondary students’ learning about the nature of science through the historical case of Semmelweis and childbed fever]. Revista Científica, 27, 302–317.Google Scholar
  16. Aragón, M. M., Acevedo, J. A., & García-Carmona, A. (2018). Prospective biology teachers’ understanding of the nature of science through an analysis of the historical case of Semmelweis and childbed fever. Cultural Studies of Science Education.
  17. Armstrong, D., Gosling, A., Weinman, J., & Marteau, T. (1997). The place of inter-rater reliability in qualitative research: An empirical study. Sociology, 31(3), 597–606.CrossRefGoogle Scholar
  18. Bell, R. L., Mulvey, B. K., & Maeng, J. L. (2012). Beyond understanding: Process skills as a context for nature of science instruction. In M. S. Khine (Ed.), Advances in nature of science research (pp. 225–245). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Bilican, K., & Cakıroglu, J. (2011). A case study on pre-service science teachers’ self-efficacy beliefs on teaching nature of science. Paper presented at the European Educational Research Association Conference 2011. Berlin: Freie Universität.Google Scholar
  20. Bonil, J., & Márquez, C. (2011). Qué experiencias manifiestan los futuros maestros sobre las clases de ciencias? Implicaciones para su formación [What science class experiences do future teachers report?. Implications for science teacher education]. Revista de Educación, 354, 447–472.Google Scholar
  21. Bybee, R. W. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth: Heinemann.Google Scholar
  22. Capps, D. K., & Crawford, B. A. (2013). Inquiry-based professional development: What does it take to support teachers in learning about inquiry and nature of science? International Journal of Science Education, 35(12), 1947–1978.CrossRefGoogle Scholar
  23. Clough, M. P. (2011). Teaching and assessing the nature of science. The Science Teacher, 78(6), 56–60.Google Scholar
  24. Clough, M. P. (2018). Teaching and learning about the nature of science. Science & Education, 27(1–2), 1–5.CrossRefGoogle Scholar
  25. Dagher, Z. R., & Erduran, S. (2016). Reconceptualizing the nature of science for science education. Why does it matter? Science & Education, 25(1–2), 147–164.CrossRefGoogle Scholar
  26. Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young People’s Images of Science. Buckingham: Open University Press.Google Scholar
  27. Elliot, J. (2000). La investigación-acción en educación [Action research in education] (4th ed.). Madrid: Morata.Google Scholar
  28. García-Carmona, A., & Acevedo, J. A. (2016). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo [Pre-service primary teachers’ conceptions on the nature of science: A diagnostic assessment from reflections made in small work teams]. Revista Mexicana de Investigación Educativa, 21(69), 583–610.Google Scholar
  29. García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26(1-2), 65–91.CrossRefGoogle Scholar
  30. García-Carmona, A., & Cruz-Guzmán, M. (2016). ¿Con qué vivencias, potencialidades y predisposiciones inician los futuros docentes de Educación Primaria su formación en la enseñanza de la ciencia? [What personal experiences, potentialities and predispositions do prospective primary teachers manifest when they start their training in science teaching?] Revista Eureka sobre Enseñanza y Divulgación de las Ciencias,13(2), 440–458.CrossRefGoogle Scholar
  31. García-Carmona, A., Cruz-Guzmán, M. & Criado, A. M. (2014) ‘¿Qué hacías para aprobar los exámenes de ciencias, qué aprendiste y qué cambiarías?’. Preguntamos a futuros docentes de Educación Primaria [Scientific literacy at the 3-6 year old stage: an analysis of Spain’s national curriculum]. Investigación en la Escuela, 84, 31–46.Google Scholar
  32. Gogolin, S., & Krüger, D. (2018). Students’ understanding of the nature and purpose of models. Journal of Research in Science Teaching, 55(9), 1313–1338.CrossRefGoogle Scholar
  33. Guisasola, J., & Morentin, M. (2007). Comprenden la naturaleza de la ciencia los futuros maestros y maestras de educación primaria? [Do pre-service primary teachers understand the nature of science?]. Revista Electrónica de Enseñanza de las Ciencias, 6(2), 246–262.Google Scholar
  34. Hanuscin, D. L., Lee, M. H., & Akerson, V. L. (2011). Elementary teachers' pedagogical content knowledge for teaching the nature of science. Science Education, 95(1), 145–167.CrossRefGoogle Scholar
  35. Hodson, D. (2014). Nature of science in the science curriculum: Origin, development, implications and shifting emphases. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer.Google Scholar
  36. Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.CrossRefGoogle Scholar
  37. Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 999–1021). Dordrecht: Springer.Google Scholar
  38. Justi, R., & Mendonça, P. C. C. (2016). Discussion of the controversy concerning a historical event among pre-service teachers. Contributions to their knowledge about science, their argumentative skills, and reflections about their future teaching practices. Science & Education, 25(7–8), 795–822.CrossRefGoogle Scholar
  39. Kampourakis, K. (2016). The “general aspects” conceptualization as a pragmatic and effective means to introducing students to nature of science. Journal of Research in Science Teaching, 53(5), 667–682.CrossRefGoogle Scholar
  40. Khishfe, R., & Lederman, N. (2007). Relationship between instructional context and views of nature of science. International Journal of Science Education, 29(8), 939–961.CrossRefGoogle Scholar
  41. Laherto, A. M. P., Kampschulte, L., de Vocht, M., Blonder, R., Akaygün, S., & Apotheker, J. (2018). Contextualizing the EU's “responsible research and innovation” policy in science education. Eurasia Journal of Mathematics, Science & Technology Education, 14(6), 2287–2300.CrossRefGoogle Scholar
  42. NGSS Lead States. (2013). The next generation science standards: For states, by states. Washington, DC: National Academy of Sciences Press.Google Scholar
  43. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah: Lawrence Erlbaum.Google Scholar
  44. Lederman, N. G., & Abd-El-Khalick, F. (1998). Avoiding de-natured science: Activities that promote understandings of the nature of science. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 83–126). Dordrecht: Kluwer Academic.Google Scholar
  45. Lin, J. W. (2014). Elementary school teachers’ knowledge of model functions and modeling processes: A comparison of science and non-science majors. International Journal of Science and Mathematics Education, 12(5), 1197–1220.CrossRefGoogle Scholar
  46. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills: Sage.CrossRefGoogle Scholar
  47. Martín del Pozo, R., Fernández-Lozano, P., González-Ballesteros, M., & de Juanas, Á. (2013). El dominio de los contenidos escolares: competencia profesional y formación inicial de maestros [Mastery of content: Professional competences and pre-service teacher education]. Revista de Educación, 360, 363–387.Google Scholar
  48. Martins, A. F. P. (2015). Natureza da Ciência no ensino de ciências: Uma proposta baseada em “temas” e “questões” [the nature of science in science teaching: A proposal based on “issues” and “questions”]. Caderno Brasileiro de Ensino de Física, 32(3), 703–737.CrossRefGoogle Scholar
  49. Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In E. M. S. Khine (Ed.), Advances in Nature of Science Research (pp. 3–26). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Matthews, M. R. (2015). Science teaching: The contribution of history and philosophy of science (20th anniversary revised and expanded ed.). New York: Routledge.Google Scholar
  51. Mayrin, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research, 1(2), 1–10.Google Scholar
  52. McComas, W. F. (2004). Keys to teaching the nature of science. The Science Teacher, 71(9), 24–27.Google Scholar
  53. McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.CrossRefGoogle Scholar
  54. Michel, H., & Neumann, I. (2016). Nature of science and science content learning. Science & Education, 25(9–10), 951–975.CrossRefGoogle Scholar
  55. Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.CrossRefGoogle Scholar
  56. Newman, W. J., Abell, S. K., Hubbard, P. D., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.CrossRefGoogle Scholar
  57. Oliva, J. M., & Acevedo, J. A. (2005). La enseñanza de las ciencias en primaria y secundaria hoy. Algunas propuestas de futuro [Science teaching in primary and secondary education today. Some proposals for future]. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 2(2), 241–250.Google Scholar
  58. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.CrossRefGoogle Scholar
  59. Organisation for Economic Co-operation and Development [OECD]. (2017). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Solving Probem. Paris: OECD Publishing.Google Scholar
  60. Rudge, D. W., & Howe, E. M. (2009). An explicit and reflective approach to the use of history to promote understanding of the nature of science. Science & Education, 18(5), 561–580.CrossRefGoogle Scholar
  61. Rudge, D. W., Cassidy, D. P., Fulford, J. M., & Howe, E. M. (2014). Changes observed in views of nature of science during a historically based unit. Science & Education, 23(9), 1879–1909.CrossRefGoogle Scholar
  62. Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura [Activities that promote transfer of learning: a review of the literature]. Revista de Educación, No. Extraordinario, 34–53.Google Scholar
  63. Seale, C. (1999). The quality of qualitative research. Introducing qualitative methods series. London: SAGE.Google Scholar
  64. Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick: Rutgers University Press.Google Scholar
  65. Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for Information, 22(2), 63–75.CrossRefGoogle Scholar
  66. Sohr, E. R., Gupta, A., & Elby, A. (2018). Taking an escape hatch: Managing tension in group discourse. Science Education, 102(5), 883–916.CrossRefGoogle Scholar
  67. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368.CrossRefGoogle Scholar
  68. Verdugo, J. J., Solaz-Portolés, J. J., & Sanjosé, V. (2016). Pre-service primary school teachers’ science content knowledge: An instrument for its assessment. International Journal of Innovation in Science and Mathematics Education, 24(2), 37–51.Google Scholar
  69. Wallace, J. (2017). Teaching NOS in an age of plurality. Canadian Journal of Science, Mathematics, and Technology Education, 17(1), 1–2.CrossRefGoogle Scholar
  70. Williams, C. T., & Rudge, D. W. (2016). Emphasizing the history of genetics in an explicit and reflective approach to teaching the nature of science. A pilot study. Science & Education, 25(3–4), 407–427.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Didáctica de las Ciencias Experimentales y Sociales, Facultad de Ciencias de la EducaciónUniversidad de SevillaSevillaSpain

Personalised recommendations