A Framework of Effective Science Explanation Videos Informed by Criteria for Instructional Explanations

  • Christoph KulgemeyerEmail author


Science explanation videos, especially online ones, have become popular. They cover nearly all topics from school science curricula. Teachers use them in a flipped classroom. Students watch them also in their leisure time. However, there is a lack of research on guidelines that effective science explanation videos should follow. The research on instructional explanations provides essential insights into the effectiveness of science explanation videos. The goal of the present article is to develop a framework for effective science explanation videos. The development consists of two steps. First, criteria for a high explaining quality are derived from the research on effective instructional explanations. That leads to a coherent theoretical framework that requires empirical justification. The second step, therefore, is an exploration of the effects of the framework. We developed two explanation videos: one high explaining quality (HE) video following the framework and one low explaining quality (LE) video explicitly not following the framework. Both videos, however, are scientifically correct and provide the same learning opportunities. Students from a German high school assigned to two groups (n = 90; n = 86) watched, respectively, the HE and LE videos, and participated in tests for declarative and conceptual knowledge before and after watching the videos. The main result is that the HE group outperformed the LE group in the achievement of declarative knowledge (Cohen’s d = .42, p = .007). We interpret that as an argument for the validity of the framework of effective science explanation videos presented in this article.


Explanation videos Instructional videos Instructional explanations Achievement Explanatory videos Flipped classroom 


  1. Acuña, S., García-Rodicio, H., & Sánchez, E. (2011). Fostering active processing of instructional explanations of learners with high and low prior knowledge. European Journal of Psychology of Education, 26, 435–452.CrossRefGoogle Scholar
  2. Altmann, A., & Nückles, M. (2017). Empirische Studie zu Qualitätsindikatoren für den diagnostischen Prozess [empirical studies on quality criteria for a diagnostic process]. In A. Südkamp & A.-K. Praetorius (Eds.), Diagnostische Kompetenz von Lehrkräften: Theoretische und methodische Weiterentwicklungen [Teachers’ diagnostic competence: theoretical and methodological developments] (pp. 134–141). Münster: Waxmann.Google Scholar
  3. Alty, J. L., & Coombs, M. J. (1981). Communicating with university computer users: a case study. In M. J. Coombs & J. L. Alty (Eds.), Computing skills and the user interface (pp. 7–71). London: Academic Press.Google Scholar
  4. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: lessons learned. The Journal of the Learning Sciences, 4, 67–207.CrossRefGoogle Scholar
  5. Beheshti, M., Taspolat, A., Kaya, S. O., & Sapanca, F. H. (2018). Characteristics of instructional videos. World Journal on Educational Technology: Current Issues, 10(1), 061–069.Google Scholar
  6. Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.CrossRefGoogle Scholar
  7. Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93, 26–55.CrossRefGoogle Scholar
  8. Brame, C. J. (2016). Effective educational videos: principles and guidelines for maximizing student learning from video content. CBE - Life Sciences Education, 15(4), 1–6.CrossRefGoogle Scholar
  9. Bishop, J. L., & Verleger, M. (2013). The flipped classroom: a survey of the research, In ASEE National Conference Proceedings (Vol. 30). GA: Atlanta.Google Scholar
  10. Champagne, A. B., Klopfer, L. E., & Gunstone, R. F. (1982). Cognitive research and the design of science instruction. Educational Psychologist, 17, 31–53.CrossRefGoogle Scholar
  11. Charalambous, C. Y., Hill, H. C., & Ball, D. L. (2011). Prospective teachers’ learning to provide instructional explanations: how does it look and what might it take? Journal of Mathematics Teacher Education, 22(1), 9–23.Google Scholar
  12. Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive Science, 25, 471–533.CrossRefGoogle Scholar
  13. Clark, L. A., & Watson, D. (1995). Constructing validity: basic issues in objective scale development. Psychological Assessment, 7(3), 309–319.CrossRefGoogle Scholar
  14. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  15. Crossley, S. A., Skalicky, S., Dascalu, M., McNamara, D. S., & Kyle, K. (2017). Predicting text comprehension, processing, and familiarity in adult readers: new approaches to readability formulas. Discourse Processes: A Multidisciplinary Journal, 54, 340–359. Scholar
  16. DeJong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science: An International Journal of the Learning Sciences, 38(2), 105–134.CrossRefGoogle Scholar
  17. Duffy, G., Roehler, L., Meloth, M., & Vavrus, L. (1986). Conceptualizing instructional explanation. Teaching and Teacher Education, 2, 197–214.CrossRefGoogle Scholar
  18. Dutke, S., & Reimer, T. (2000). Evaluation of two types of online help for application software. Journal of Computer-Assisted Learning, 16, 307–315.CrossRefGoogle Scholar
  19. Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32, 221–233.CrossRefGoogle Scholar
  20. Gage, N. L. (1968). The microcriterion of effectiveness in explaining. In N. L. Gage (Ed.), Explorations of the teacher's effectiveness in explaining (pp. 1–8) Stanford Center for Research and Development in teaching.Google Scholar
  21. Geelan, D. (2012). Teacher explanations. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 987–999). Dordrecht: Springer.CrossRefGoogle Scholar
  22. Hattie, J. (2009). Visible learning. London: Routledge.Google Scholar
  23. Hempel, C., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175.CrossRefGoogle Scholar
  24. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.CrossRefGoogle Scholar
  25. Kamalski, J., Sanders, T., & Lentz, L. (2008). Coherence marking, prior knowledge and comprehension of informative and persuasive text: Sorting things out. Discourse Processes, 45, 323–345.CrossRefGoogle Scholar
  26. Kincaid, J. P., Fishburne, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas: (automated readability index, fog count and Flesch Reading ease formula) for navy enlisted personnel. (no. RBR–8–75). Naval Technical Training Command, Millington, TN: Research Branch.Google Scholar
  27. Korthagen, F. A. J., & Kessels, J. P. A. M. (1999). Linking theory and practice: changing the pedagogy of teacher education. Educational Researcher, 28(4), 4–17.CrossRefGoogle Scholar
  28. Kulgemeyer, C., & Peters, C. (2016). Exploring the explaining quality of physics online explanatory videos. European Journal of Physics, 37(6), 1–14.CrossRefGoogle Scholar
  29. Kulgemeyer, C., & Riese, J. (2018) From professional knowledge to professional performance: The impact of CK and PCK on teaching quality in explaining situations. Journal of Research in Science Teaching, 1–26.
  30. Kulgemeyer, C., & Schecker, H. (2009). Kommunikationskompetenz in der Physik: Zur Entwicklung eines domänenspezifischen Kompetenzbegriffs [Communication Competence in Physics: On the development of a domain-specific concept of competence]. Zeitschrift für Didaktik der Naturwissenschaften, 15, 131–153.Google Scholar
  31. Kulgemeyer, C., & Schecker, H. (2013). Students explaining science: Assessment of science communication competence. Research in Science Education, 43, 2235–2256.CrossRefGoogle Scholar
  32. Kulgemeyer, C., & Tomczyszyn, E. (2015). Physik erklären – Messung der Erklärensfähigkeit angehender Physiklehrkräfte in einer simulierten Unterrichtssituation [Explaining physics: Measuring teacher trainees’ explaining skills using a simulated teaching setting]. Zeitschrift für Didaktik der Naturwissenschaften, 21(1), 111–126.CrossRefGoogle Scholar
  33. Lehman, S., & Schraw, G. (2002). Effects of coherence and relevance on shallow and deep text processing. Journal of Educational Psychology, 94, 738–750.CrossRefGoogle Scholar
  34. Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38, 43–52.CrossRefGoogle Scholar
  36. Mayer, R. E., Moreno, R., Boire, M., & Vagge, S. (1999). Maximizing constructivist learning from multimedia communications by minimizing cognitive load. Journal of Educational Psychology, 91, 638–643.CrossRefGoogle Scholar
  37. Moreno, R. (2010). Cognitive load theory: more food for thought. Instructional Science: An International Journal of the Learning Sciences, 38(2), 135–141.CrossRefGoogle Scholar
  38. Muller, D. (2008). Designing effective multimedia for physics education. PhD Thesis, School of Physics, University of Sydney, Australia.Google Scholar
  39. Nathan, M., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905–928.CrossRefGoogle Scholar
  40. Nielsen, W., & Hoban, G. (2015). Designing a digital teaching resource to explain phases of the moon: a case study of preservice elementary teachers making a Slowmation. Journal of Research in Science Teaching, 52(9), 1207–1233.CrossRefGoogle Scholar
  41. Mayer, R. (Ed.). (2014). The Cambridge handbook of multimedia learning (2nd ed.). New York: The Cambridge University Press.Google Scholar
  42. Paivio, A. (1986). Mental representations: a dual coding approach, Oxford psychology series, New York: Oxford University press. Clarendon Press.Google Scholar
  43. Papadouris, N., Vokos, S., & Constantinou, C. (2017). The pursuit of a “better” explanation as an organizing framework for science teaching and learning. Science Education, 102, 219–237.CrossRefGoogle Scholar
  44. Pekdag, B., & Le Marechal, J. F. (2010). Movies in chemistry education. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1–19.Google Scholar
  45. Renkl, A., Wittwer, J., Große, C., Hauser, S., Hilbert, T., Nückles, M., & Schworm, S. (2006). Instruktionale Erklärungen beim Erwerb kognitiver Fertigkeiten: sechs Thesen zu einer oft vergeblichen Bemühung [Instructional explanations and the achievement in cognitive skills: Six hypotheses on a failing attempt]. In I. Hosenfeld (Ed.): Schulische Leistung. Grundlagen, Bedingungen, Perspektiven [Achievement in schools. Models, conditions, perspectives] (pp. 205–223). Münster, Germany: Waxmann.Google Scholar
  46. Rescher, N. (1962). The stochastic revolution and the nature of scientific explanation. Synthese, 14, 200–215.CrossRefGoogle Scholar
  47. Roelle, J., Berthold, K., & Renkl, A. (2014). Two instructional aids to optimise processing and learning from instructional explanations. Instructional Science, 42, 207–228.CrossRefGoogle Scholar
  48. Sánchez, E., García Rodicio, H., & Acuña, S. R. (2009). Are instructional explanations more effective in the context of an impasse? Instructional Science, 37, 537–563.CrossRefGoogle Scholar
  49. Schmidt, S. M. P., & Ralph, D. L. (2016). The flipped classroom: a twist on teaching. Contemporary Issues in Education Research, 9(1), 1–6. Retrieved from Accessed 6 Nov 2018.CrossRefGoogle Scholar
  50. Schmidt-McCormack, J. A., Muniz, M. N., Keuter, E. C., Shaw, S. K., & Cole, R. S. (2017). Design and implementation of instructional videos for upper-division undergraduate laboratory courses. Chemistry Education Research and Practice, 18(4), 749–762. Scholar
  51. Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.CrossRefGoogle Scholar
  52. Schroeder, N. L., & Traxler, A. L. (2017). Humanizing instructional videos in physics: when less is more. Journal of Science Education and Technology, 26(3), 269–278. Scholar
  53. Seidel, T., Blomberg, G., & Renkl, A. (2013). Instructional strategies for using video in teacher education. Teaching and Teacher Education, 34, 56–65.CrossRefGoogle Scholar
  54. Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: a rubric for measuring the effectiveness of scientific explanations. International Journal of Science Education, 30(11), 1441–1467.CrossRefGoogle Scholar
  55. Sorden, S. (2013). The cognitive theory of multimedia learning. In B. Irby, G. Brown, R. Lara-Alecio, & S. Jackson (Eds.), The handbook of educational theories (pp. 155–168). Charlotte: Information Age.Google Scholar
  56. Stockwell, B. R., Stockwell, M. S., Cennamo, M., & Jiang, E. (2015). Blended learning improves science education. Cell, 162(5), 933–936.CrossRefGoogle Scholar
  57. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12(2), 257–285.CrossRefGoogle Scholar
  58. Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8, 351–362.CrossRefGoogle Scholar
  59. Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29(7), 853–870.CrossRefGoogle Scholar
  60. Thomson, A., Bridgstock, R., & Willems, C. (2014). “Teachers flipping out” beyond the online lecture: maximising the educational potential of video. Journal of Learning Design, 7(3), 67–78.CrossRefGoogle Scholar
  61. Treagust, D., & Harrison, A. (1999). The genesis of effective science explanations for the classroom. In J. Loughran (Ed.), Researching teaching: methodologies and practices for understanding pedagogy (pp. 28–43). Abingdon: Routledge.Google Scholar
  62. Webb, N. M., Ing, M., Kersting, N., & Nemer, K. M. (2006). Help seeking in cooperative learning groups. In S. A. Karabenick & R. S. Newman (Eds.), Help seeking in academic settings: goals, groups, and contexts (pp. 45–88). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  63. Wittwer, J., & Ihme, N. (2014). Reading skill moderates the impact of semantic similarity and causal specificity on the coherence of explanations. Discourse Processes, 51, 143–166.CrossRefGoogle Scholar
  64. Wittwer, J., Nückles, M., Landmann, N., & Renkl, A. (2010). Can tutors be supported in giving effective explanations? Journal of Educational Psychology, 102, 74–89.CrossRefGoogle Scholar
  65. Wittwer, J., & Renkl, A. (2008). Why instructional explanations often do not work: a framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 49–64.CrossRefGoogle Scholar
  66. Wolf, K., & Kratzer, V. (2015). Erklärstrukturen in selbsterstellten Erklärvideos von Kindern [Explaining structures in pupils’ self-made explanation videos.]. In K. Hugger, A. Tillmann, S. Iske, J. Fromme, P. Grell & T. Hug (Eds.), Jahrbuch Medienpädagogik 12 [Yearbook media pedagogy] (pp. 29–44) Springer.Google Scholar
  67. Wolf, K., & Kulgemeyer, C. (2016). Lernen mit Videos? Erklärvideos im Physikunterricht [Learning with videos? Explanation videos in physics teaching.]. Naturwissenschaften Im Unterricht Physik, 27(152), 36–41.Google Scholar
  68. Wolf, K. (2018). Video statt Lehrkraft? Erklärvideos als didaktisches element im Unterricht [Video replacing teachers? Explanation videos as part of instruction]. Computer + Unterricht, 109, 4-7.Google Scholar
  69. Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker, J. F. (2006). Instructional video in e-learning: assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15–27.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Science Education, Physics Education DepartmentUniversity of BremenBremenGermany

Personalised recommendations