Advertisement

The Use of Concept Maps as an Assessment Tool in Physics Classes: Can One Use Concept Maps for Quantitative Evaluations?

  • Julia Gil LlinásEmail author
  • Francisco Solano Macías
  • Luis Manuel Tobaja Márquez
Article
  • 203 Downloads

Abstract

The aim of the present research was to explore the use of concept maps as an assessment tool. The research question posed was: can concept maps be used to quantitatively assess the learning of a physics topic in an engineering course? This paper describes a new approach to quantifying concept maps. The research was preceded by a pilot project that allowed the necessary processes for the proper conduct of the research to be developed. The sample comprised 47 first-year engineering students who were asked to construct a concept map about the content of electrostatic interactions. The concept maps the students prepared were valued quantitatively and qualitatively by an expert instructor. To validate the approach, an analysis of the relationship between the scores given in the three evaluation forms was made. A comparative statistical analysis of the multiple-choice examination data with the quantitative and the qualitative evaluations of the concept maps found not only that there were no significant differences between them in either case, but also that they were moderately, but significantly, correlated. These results suggest that we are on the right track to obtain an effective and easy-to-use tool to evaluate the students’ learning results based on the quantitative assessment of the conceptual maps elaborated by them. Moreover, the analysis of the concept maps in the pilot stage allowed the difficulties that the students had during their learning to be detected, which led to the sequencing of the content of the electrostatic interactions topic being changed.

Keywords

Assessment Concept maps, physics Electrostatic interactions 

Notes

Acknowledgements

We are grateful to the instructor education and counseling service of the University of Extremadura for granting us the teaching innovation project entitled “Use of concept maps in evaluating student learning in the new degree courses in Telematics Engineering, Geomatics and Surveying Engineering, and Industrial Design and Product Development Engineering.”

References

  1. Ählberg, M. A., & Ahoranta, V. (2008). Concept maps and short-answer tests: probing pupils’ learning and cognitive structure. Proc. of the Third Int. Conference of Concept Mapping, 1, 260–267 Retrieved from http://eprint.ihmc.us/352/.Google Scholar
  2. Antunes, A. M., Cristina, J., De Menezes, N., Rafaela, V., & Cruz, M. (2013). Mapas Conceituais No Ensino De Ciências: Construindo Conhecimentos Sobre Sistema Nervoso (conceptual maps in science teaching: building knowledge on the nervous system). Experiências Em Ensino de Ciências, 8(3), 22–38.Google Scholar
  3. Besterfield-Sacre, M., Gerchak, J., Lyons, M. R., Shuman, L. J., & Wolfe, H. (2004). Scoring concept maps: an integrated rubric for assessing engineering education. Journal of Engineering Education, 93(2), 105–115.CrossRefGoogle Scholar
  4. Brandstädter, K., Harms, U., & Großschedl, J. (2012). Assessing system thinking through different concept-mapping practices. International Journal of Science Education, 34(14), 2147–2170.  https://doi.org/10.1080/09500693.2012.716549.CrossRefGoogle Scholar
  5. Bransford, J., Brown, A. L. & Cocking, R. R. (Eds.) (1999). How people learn: brain, mind experience and school. Washington, DC.: National Academy Press.Google Scholar
  6. Cañas, A. J., Novak, J. D., & Reiska, P. (2015). How good is my concept map? Am I a good Cmapper? Knowledge Management & E-Learning, 7(1), 6–19.Google Scholar
  7. Ciliberti, N., & Galagovsky, L. R. (1999). Las redes conceptuales como aprendizaje conceptual de los alumnos (conceptual networks as students’ conceptual learning.). Enseñanza de las Ciencias, 17(1), 17–29.Google Scholar
  8. Costamagna, A.M. (1995). Mapas conceptuales como expresión de interdisciplinaridad aplicados a la evaluación del planteamiento curricular. Temas de enseñanza en biología (conceptual maps as an expression of interdisciplinarity applied to the evaluation of the curricular approach. Subjects of teaching in biology). Santa Fe: Centro de Publicaciones de la UNL.Google Scholar
  9. Costamagna, A. M. (2001). Mapas conceptuales como expresión de procesos de interrelación para evaluar la evolución del conocimiento de los alumnos universitarios (conceptual maps as expression of processes of interrelation to evaluate the evolution of knowledge of university students.). Enseñanza de las Ciencias, 19(2), 309–318.Google Scholar
  10. de Freitas Filho, J. R., Pereira da Silva Rufino de Freitas, L., & Rufino de Freitas, J. C. (2013). Mapas conceituais: utilização no processo de avaliação da aprendizagem do conteúdo haletos (conceptual maps: use in the evaluation process of the learning of halide content). Experiências Em Ensino de Ciências, 8(3).Google Scholar
  11. Ding, L., & Beichner, R. (2009). Approaches to data analysis of multiple-choice questions. Physical Review Special Topics - Physics Education Research, 5(2), 1–17.  https://doi.org/10.1103/PhysRevSTPER.5.020103.CrossRefGoogle Scholar
  12. Domínguez-Marrufo, L. S., Sánchez-Valenzuela, M. M. & Aguilar-Tamayo, M. F. (2010). Rubrica con sistema de puntaje para evaluar mapas conceptuales de lectura de comprensión (rubric with scoring system to evaluate comprehension reading concept maps). In: Sánchez, J., Cañas, A.J. & Novak, J.D. Proc. of Fourth Int. Conference on Concept Mapping. Viña del Mar, Chile.Google Scholar
  13. Feynman, R., Leighton, R. B., & Sands, M. (1998). Feynman Vol. 2. México: Pearson Educación.Google Scholar
  14. Fisher, K. M. (2000). SemNet software as an assessment tool. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Assessing science understanding: a human constructivist view (pp. 197–221). San Diego: Academic Press.Google Scholar
  15. Gil, J., Suero, M. I. & Pérez, A. L. (2004). Macrosecuencia instruccional de óptica siguiendo la Teoría de la Elaboración de Reigeluth y Stein implementada en cmaptools (instructional macrosequence of optics following the theory of elaboration of Reigeluth and Stein implemented in cmaptools). In: Cañas, A. J.; Novak, J. D.; González, F. M. Concept Maps: Theory, Methodology, technology. Proc. of the First Int. Conference on Concept Mapping. Pamplona (Spain).Google Scholar
  16. Jianhua, L. (2013). The assessment agent system: design, development, and evaluation. Education Tech Research Dev, 61, 197.CrossRefGoogle Scholar
  17. Krummenauer, W. L., & Cabral da Costa, S. S. (2009). Mapas Conceituais como instrumentos de avaliação na educação de jovens e adultos (conceptual maps as instruments of evaluation in the education of young people and adults). Experiências Em Ensino de Ciências, 4(2), 33–38.Google Scholar
  18. Marques Toigo, A., Moreira, M. A., & Cabral da Costa, S. S. (2012). Revisión de la literatura sobre el uso de mapas conceptuales como estrategia didáctica y de evaluación (review of the literature on the use of conceptual maps as a didactic and evaluation strategy.). Investigaçoes Em Ensino de Ciências, 17(2), 305–339.  https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
  19. Moreira, M. A., & Novak, J. D. (1988). Investigación en enseñanza de las ciencias en la Universidad de Cornell: esquemas teóricos, cuestiones centrales y abordes metodológicos (research in science teaching at Cornell University: theoretical frameworks, core issues and methodological approaches). Enseñanza de las Ciencias, 6(1), 3.Google Scholar
  20. Novak, J. D. (1993). Human constructivism: a unification of psychological and epistemological phenomena in meaning making. International Journal of Personal Construct Psychology, 6, 167–193.CrossRefGoogle Scholar
  21. Novak, J. D. (1998). Learning, creating, and using knowledge: concept maps as facilitative tools in schools and corporations. Mahweh: Lawrence Erlbaum Associates.Google Scholar
  22. Novak, J. D. (2002). Meaningful learning: the essential factor for conceptual change in limited or appropriate propositional hierarchies (liphs) leading to empowerment of learners. Science Education, 86(4), 548–571.CrossRefGoogle Scholar
  23. Novak, J. D., & Cañas, A. J. (2004). Building on constructivist ideas and CmapTools to create a new model for education. In: Cañas, A. J.; Novak J. D.; González, F. M. Concept Maps: Theory, Methodology, Technology. Proc. of the First Int. Conference on Concept Mapping. Pamplona, Spain: Universidad Pública de Navarra.Google Scholar
  24. Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.CrossRefGoogle Scholar
  25. Ozdemir, A. S. (2005). Analyzing concept maps as an assessment (evaluation) tool in teaching mathematics. Journal of Social Sciencies, 1(3), 141–149.CrossRefGoogle Scholar
  26. Pérez, A. L., Suero, M. I., Montanero, M., & Pardo, P. J. (2004). Aplicaciones de la Teoría de la Elaboración de Reigeluth y Stein a la Enseñanza de la Física. Una Propuesta en la Utilización del Programa Informático CmapTools (applications of the theory of elaboration of Reigeluth and Stein to the teaching of physics. A proposal in the use of the CmapTools computer program). In: Cañas, A. J.; Novak J. D.; González, F. M. Concept Maps: Theory, Methodology, Technology. Proc. of the First Int. Conference on Concept Mapping. Pamplona, Spain: Universidad Pública de Navarra.Google Scholar
  27. Pérez, A. L., Suero, M. I., Pardo, P. J. & Montanero, M. (2006a). Utilización de los mapas conceptuales para mejorar los conocimientos relativos a la corriente eléctrica mediante su reconstrucción colaborativa (use of concept maps to improve knowledge about electric current through collaborative reconstruction). In: Concept Maps: Theory, methodology, technology, proceedings of the Second International Conference on Concept Mapping. San José.Google Scholar
  28. Pérez, A. L., Suero, M. I., Pardo, P. J. & Montanero, M. (2006b). Utilización de los mapas conceptuales para mejorar los conocimientos relativos a la luz mediante se reconstrucción colaborativa (use of concept maps to improve light-related knowledge through collaborative reconstruction). In: Concept Maps: Theory, methodology, technology, proceedings of the Second International Conference on Concept Mapping. San José.Google Scholar
  29. Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly integrated model assessment technology and tools. Educational Technology Research and Development, 58(3), 3–18.CrossRefGoogle Scholar
  30. Purcell, E. M. (1969). Berkeley physics course Vol. 2. Barcelona: Editorial Reverté, S. A.Google Scholar
  31. Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569–600.CrossRefGoogle Scholar
  32. Sandoval M. & Mora C. (2009). Modelos erróneos sobre la comprensión del campo eléctrico en estudiantes universitarios (wrong models on the understanding of the electric field in university students.). Latin-American Journal of Physics Education 3 (3).Google Scholar
  33. Tipler, P. A. & Mosca, G. (2005). Física para la Ciencia y Tecnología Vol.2. (physics for science and technology). Barcelona: Editorial Reverté, S. A.Google Scholar
  34. Trumpower, D. L. & Sarwar, G. S. (2010). Formative structural assessment: using concept maps as assessment for learning. In: Sánchez, J., Cañas, A.J. & Novak, J.D. Proc. of Fourth Int. Conference on Concept Mapping. Viña del Mar, Chile.Google Scholar
  35. Yin, Y., Vanides, J., Ruiz-Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept mapping techniques: implications for scoring, interpretation and use. Journal of Research in Science Teaching, 42, 166–184.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dpto. Física AplicadaUnexMéridaSpain
  2. 2.IES ExtremaduraMéridaSpain
  3. 3.Col. “Mª Auxiliadora”MéridaSpain

Personalised recommendations