Students’ Energy Understanding Across Biology, Chemistry, and Physics Contexts

Article

Abstract

Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students’ progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

Keywords

Crosscutting concept Disciplinary core idea Energy Knowledge integration 

Notes

Acknowledgments

We thank the city of Hamburg for funding this research as part of the alles>>könner project, and we acknowledge the support from all participating teachers and students. We owe special thanks to Ilka Parchmann for the development of the chemistry items and her substantial participation in the discussion of our findings. We are very grateful to David Fortus for all his productive comments on this manuscript and for allowing this work to be summed up during a research stay at his research group. Finally, we would like to thank the anonymous reviewers who invested their time and expertise for the revisions of this work.

Supplementary material

11165_2017_9632_MOESM1_ESM.docx (24 kb)
Online resource 1 (DOCX 23 kb)
11165_2017_9632_MOESM2_ESM.docx (90 kb)
Online resource 2 (DOCX 90 kb)

References

  1. Alonzo, A. C., & Gotwals, A. W. (2012). Learning progressions in science-current challenges and future directions. Rotterdam: Sense Publishers.Google Scholar
  2. Barak, J., Gorodetsky, M., & Chipman, D. (1997). Understanding of Energy in Biology and Vitalistic Conceptions. International Journal of Science Education, 19(1), 21–30.Google Scholar
  3. Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: fundamental measurement in the human sciences. Mahwah, NJ: Lawrence Erlbaum Associates, Inc..Google Scholar
  4. Boyes, E., & Stanisstreet, M. (1991). Misconceptions in first-year undergraduate science students about energy sources for living organisms. Journal of Biological Education, 25(3), 209–213.CrossRefGoogle Scholar
  5. Boylan, C. (2008). Exploring elemantary students’ understanding of energy and climate change. International Electronic Journal of Elementary Education, 1(1), 1–15.Google Scholar
  6. Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: brain, mind, experience and school. Washington, D.C.: National Academy Press.Google Scholar
  7. Burger, J. (2001). Schülervorstellungen zu "Energie im biologischen Kontext"—Ermittlungen, Analysen und Schlussfolgerungen [Student conceptions on energy in biological contexts—assessment, analyses and conclusions]. Doctoral dissertation, Univeristy of Bielefeld, Germany. Available at: https://pub.uni-bielefeld.de/publication/2305865
  8. Chabalengula, V., Sanders, M., & Mumba, F. (2011). Diagnosing students’ understanding of energy and its related concepts in biological contexts. International Journal of Science and Mathematics Education, 10(2), 241–266.CrossRefGoogle Scholar
  9. Chen, B., Eisenkraft, A., Fortus, D., Krajcik, J. S., Neumann, K., Nordine, J., & Scheff, A. (2014). Teaching and Learning of Energy in K-12 Education. New York: Springer.Google Scholar
  10. Clark, D., & Linn, M. C. (2003). Designing for knowledge integration: the impact of instructional time. Journal of the Learning Sciences, 12(4), 451–493. doi: 10.1207/s15327809jls1204_1.CrossRefGoogle Scholar
  11. Constantinou, C. P., & Papadouris, N. (2012). Teaching and learning about energy in middle school: an argument for an epistemic approach. Studies in Science Education, 48(2), 161–186.CrossRefGoogle Scholar
  12. Cooper, M. M., Klymkowsky, M. W., & Becker, M. (2014). Energy in chemical systems. an integrated approach. In R. F. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  13. Dauer, J. M., Miller, H. K., & Anderson, C. W. (2014). Conservation of energy: an analytical tool for student accounts of carbon-transforming processes. In R. F. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  14. Doménech, J., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science and Education, 16(1), 43–64.CrossRefGoogle Scholar
  15. Dreyfuß, B. W., Redish, E. F., and Watkins, J. (2012). Students’ views of macroscopic and microscopic energy in physics and biology. Paper presented at the AIP Conference, Proceedings, 1413.Google Scholar
  16. Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: supporting material for secondary teachers. London: Routledge.Google Scholar
  17. Driver, R., & Warrington, L. (1985). Students' use of the principle of energy conservation in problem situations. Physics Education, 20(4), 171.CrossRefGoogle Scholar
  18. Duschl, R. A. (2012). The second dimension—crosscutting concepts understanding a framework for K–12 science education. Science Teacher, 79(2), 34–38.Google Scholar
  19. Eisenkraft, A., Nordine, J., Chen, R. F., Fortus, D., Krajcik, J. S., Neumann, K., & Scheff, A. (2014). Introduction: why focus on energy instruction? In R. F. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  20. Fortus, D., & Krajcik, J. (2012). Curriculum coherence and learning progressions. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (Vol. 24, pp. 783–798). Dordrecht, Netherlands: Springer.Google Scholar
  21. Fortus, D., Sutherland Adams, L. M., Krajcik, J. S., & Reiser, B. J. (2015). Assessing the role of curriculum coherence in student learning about energy. Journal of Research in Science Teaching, 52(10), 1408–1425.CrossRefGoogle Scholar
  22. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. doi: 10.1080/10705519909540118.CrossRefGoogle Scholar
  23. Intergovernmental Panel on Climate Change. (2013). Climate change 2013. The physical science basis-working group I. Contribution to the fifth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press.Google Scholar
  24. Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149–1180.CrossRefGoogle Scholar
  25. Kirk, R. E. (1996). Practical significance: a concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759. doi: 10.1177/0013164496056005002.CrossRefGoogle Scholar
  26. Kline, R. (2011). Principles and Practice of Structural Equation Modeling (3rd ed.). New York: The Guilford Press.Google Scholar
  27. KMK [Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland]. (2005a). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss-Beschluss vom 16.12.2004 [science standards for middle school biology, germany]. München, Germany: Luchterhand.Google Scholar
  28. KMK [Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland]. (2005b). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss: Beschluss vom 16.12.2004 [science standards for middle school chemistry, Germany]. München, Germany: Luchterhand.Google Scholar
  29. KMK [Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland]. (2005c). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss Beschluss vom 16.12.2004. [Science standards for middle school physics, Germany]. München, Germany: Luchterhand.Google Scholar
  30. Krajcik, J. S., Chen, B., Eisenkraft, A., Fortus, D., Neumann, K., Nordine, J., & Scheff, A. (2014). Conclusion and summary comments: teaching energy and associated research effort. In R. F. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  31. Kurnaz, M. A., & Sağlam-Arslan, A. (2011). A thematic review of some studies investigating students’ alternative conceptions about energy. Eurasian Journal of Chemistry and Physics Education, 3(1), 51–74.Google Scholar
  32. Lacy, S., Tobin, R., Wiser, M., & Crissman, S. (2014). Looking through the energy lens: a proposed learning progression for energy in grades 3–5. In R. F. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  33. Lancor, R. A. (2014). Using student-generated analogies to investigate conceptions of energy: a multidisciplinary study. International Journal of Science Education, 36(1), 1–23. doi: 10.1080/09500693.2012.714512.CrossRefGoogle Scholar
  34. Lancor, R. A. (2015). An analysis of metaphors used by students to describe energy in an interdisciplinary general science course. International Journal of Science Education, 37(5–6), 876–902. doi: 10.1080/09500693.2015.1025309.CrossRefGoogle Scholar
  35. Lee, H.-S., & Liu, O. L. (2009). Assessing learning progression of energy concepts across middle school grades: the knowledge integration perspective. Science Education, 94(4), 665–688.CrossRefGoogle Scholar
  36. Lerner, R. G., & Trigg, G. L. (2005). Encyclopedia of Physics Volume 1 (A-L). Weinheim, Germany: Wiley-VCH.Google Scholar
  37. Lindsey, B. A., Heron, P. R. L., & Shaffler, P. S. (2012). Student understanding of energy: difficulties related to systems. American Journal of Physics, 80(2), 154–163.CrossRefGoogle Scholar
  38. Linn, M. C., Lewis, C., Tsuchida, I., & Songer, N. B. (2000). Beyond fourth grade science: why do U.S. and Japanese students diverge? Educational Researcher, 29(3), 4–14.CrossRefGoogle Scholar
  39. Liu, X., & McKeough, A. (2005). Developmental growth in students' concept of energy: analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493–517.CrossRefGoogle Scholar
  40. Liu, X., & Ruiz, M. E. (2008). Using data mining to predict K–12 students' performance on large-scale assessment items related to energy. Journal of Research in Science Teaching, 45(5), 554–573.CrossRefGoogle Scholar
  41. Liu, X., & Tang, L. (2004). The progression of students' conceptions of energy: a cross-grade, cross-cultural study. Canadian Journal of Science, Mathematics and Technology Education, 4(1), 43–57.CrossRefGoogle Scholar
  42. Liu, O. L., Ryoo, K., Linn, M., Sato, E., & Svihla, V. (2015). Measuring knowledge integration learning of energy topics: a two-year longitudinal study. International Journal of Science Education. doi: 10.1080/09500693.2015.1016470.Google Scholar
  43. Messick, S. (1995). Validity of psychological assessment: validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741–749.CrossRefGoogle Scholar
  44. Muthén, L. K., & Muthén, B. O. (2012). MPlus- Statistical Analysis with Latent Variables, Users Guide (7th edition ed.). Los Angeles, CA.Google Scholar
  45. Nagel, M. L., & Lindsey, B. A. (2014). Student use of energy concepts from physics in chemistry courses. Chemistry Education Research and Practice. doi: 10.1039/c4rp00184b.Google Scholar
  46. National Research Council [NRC]. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press.Google Scholar
  47. Neumann, K., & Nagy, G. (2013). Students’ progression in understanding energy. Paper presented at the NARST annual international conference. Rio Grande: Puerto Rico.Google Scholar
  48. Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188.CrossRefGoogle Scholar
  49. Opitz, S., Harms, U., Neumann, K., Kowalzik, K., & Frank, A. (2015). Students’ energy concepts at the transition between primary and secondary school. Research in Science Education, 49(5), 691–715. doi: 10.1007/s11165-014-9444-8.CrossRefGoogle Scholar
  50. Opitz, S., Neumann, K., Bernholt, S., & Harms, U. (2016). Energy—a crosscutting concept? The structure of students’ progressing energy understanding in biology, chemistry and physics, In S.T. Opitz, Students’ Progressing Understanding of the Energy Concept: An Analysis of Learning in Biological and Cross-Disciplinary Contexts (pp. 66–92). Doctoral thesis: University of Kiel/Germany Available at: http://macau.uni-kiel.de/receive/dissertation_diss_00019005.Google Scholar
  51. Next Generation Science Standards [NGSS]. (2013). Next generation science standards—for states, by states. Washington: National Academic Press.Google Scholar
  52. Nordine, J., Krajcik, J., & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670–699.CrossRefGoogle Scholar
  53. Novak, J. D. (2005). Results and implications of a 12-year longitudinal study of science concept learning. Research in Science Education, 35(1), 23–40.CrossRefGoogle Scholar
  54. Park, M., & Liu, X. (2016). Assessing understanding of the energy concept in different science disciplines. Science Education, 100(3), 483–516. doi: 10.1002/sce.21211.CrossRefGoogle Scholar
  55. Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: an examination of US mathematics and science content standards from an international perspective. Journal of Curriculum Studies, 37(5), 525–559.CrossRefGoogle Scholar
  56. Shwartz, Y., Weizman, A., Fortus, D., Krajcik, J., & Reiser, B. (2008). The IQWST experience: Using coherence as a design principle for a middle school science curriculum. Elementary School Journal, 109, 199–219.CrossRefGoogle Scholar
  57. Stacy, A. M., Chang, K., Coonrod, J., & Claesgens, J. (2014). Launching the space shuttle by making water: the chemist’s view of energy. In R. F. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  58. Trumper, R. (1997). Applying conceptual conflict strategies in the learning of the energy concept. Research in Science and Technological Education, 15(1), 5–18.CrossRefGoogle Scholar
  59. van de Schoot, R., Lugtig, P., & Hox, J. (2012). Developmetrics: a checklist for testing measurement invariance. European Journal of Developmental Psychology, iFirst article, 1–7. doi: 10.1080/17405629.2012.686740.
  60. van Hook, S., & Huziak-Clark, T. (2008). Lift, squeeze, stretch, and twist: research-based inquiry physics experiences (RIPE) of energy for kindergartners. Journal of Elementary Science Education, 20(3), 1–16.CrossRefGoogle Scholar
  61. Watts, D. M. (1983). Some alternative views of energy. Physics Education, 18(5), 213.CrossRefGoogle Scholar
  62. Wernecke, U., Schwanewedel, J., Schuette, K., & Harms, U. (2016). Wie wird Energie im Biologieschulbuch dargestellt?—Entwicklung eines Kategoriensystems und exemplarische Anwendung auf eine Schulbuchreihe [how is energy represented in biology schoolbooks?—development of a categroy system and application to a school book series]. Zeitfschrift fuer die Didaktik der Naturwissenschaften (ZfDN)., 22(1), 215–229. doi: 10.1007/s40573-016-0051-2.CrossRefGoogle Scholar
  63. Yu, C.-Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Los Angeles, CA: Doctoral Dissertation.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • S. T. Opitz
    • 1
    • 2
  • K. Neumann
    • 1
  • S. Bernholt
    • 1
  • U. Harms
    • 1
  1. 1.Leibniz Institute for Science and Mathematics Education (IPN), Kiel UniversityKielGermany
  2. 2.CREATE for STEM Institute College of Education Michigan State UniversityEast LansingUSA

Personalised recommendations