Skip to main content

Advertisement

Log in

High School Students’ Perceptions of the Effects of International Science Olympiad on Their STEM Career Aspirations and Twenty-First Century Skill Development

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Social cognitive theory guided the design of a survey to investigate high school students’ perceptions of factors affecting their career contemplations and beliefs regarding the influence of their participation in the international Science Olympiad on their subject interests and twenty-first century skills. In addition, gender differences in students’ choice of competition category were studied. Mixed methods analysis of survey returns from 172 Olympiad participants from 31 countries showed that students’ career aspirations were affected most by their teachers, personal interests, and parents, respectively. Students also indicated that they believed that their participation in the Olympiad reinforced their plan to choose a science, technology, engineering, and mathematics (STEM) major at college and assisted them in developing and improving their twenty-first century skills. Furthermore, female students’ responses indicated that their project choices were less likely to be in the engineering category and more likely to be in the environment or energy categories. Findings are discussed in the light of increasing the awareness of the role and importance of Science Olympiads in STEM career choice and finding ways to attract more female students into engineering careers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665–683. doi:10.1111/j.1559-1816.2002.tb00236.x.

    Article  Google Scholar 

  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012). Science aspirations, capital, and family habitus: how families shape children’s engagement and identification with science. American Educational Research Journal, 49(5), 881–908. doi:10.3102/0002831211433290.

    Article  Google Scholar 

  • Archer, L., DeWitt, J., & Wong, B. (2013). Spheres of influence: what shapes young people’s aspirations at age 12/13 and what are the implications for education policy? Journal of Education Policy, 29(1), 58–85.

    Article  Google Scholar 

  • Aschbacher, P. R., Li, E., & Roth, E. J. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582.

    Google Scholar 

  • Atkins. (2013). Britain’s got talented female engineers—Successful women in engineering: a careers research study. http://www.atkinsglobal.com/%7E/media/Files/A/Atkins-Global/Attachments/corporate/about-us/our-publications/Atkins_Britains got talented female engineers.pdf. Retrieved December 13 2013.

  • Bandura, A. (1977). Social learning theory. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Bauer, C. F. (2005). Beyond “student attitude”: chemistry self-concept inventory for assessment of the affective component of student learning. Journal of Chemical Education, 82(12), 1864.

    Article  Google Scholar 

  • Bell, P., Lewenstein, B., Shouse, A. W., & Feder, M. A. (2009). Learning science in informal environments: people, places, and pursuits. Washington: National Academies Press.

    Google Scholar 

  • Burkam, D. T., & Lee, V. E. (2003). Mathematics, foreign language, and science coursetaking and the NELS: 88 transcript data (NCES 2003–01). Washington: U.S. Department of Education, National Center for Education Statistics.

    Google Scholar 

  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471–486.

    Article  Google Scholar 

  • Council, N. R. (2011). Successful K-12 STEM education: identifying effective approaches in science, technology, engineering, and mathematics. Washington: National Academies Press.

    Google Scholar 

  • Devine, F. (2004). Class practices: how parents help their children get good jobs. New York: Cambridge University.

  • Eisenhart, M. A. (1991). Conceptual frameworks for research circa 1991: ideas from a cultural anthropologist: implications for mathematics education researcher. Paper presented at the 13th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Blacksburg, VA.

  • Executive Office of the President. (2009). Women and girls in science, technology, engineering, and math (STEM). http://www.whitehouse.gov/ostp/women. Retrieved July 27, 2013.

  • Faulkner, W. (2006). Genders in/of engineering: a research report. University of Edinburgh Economic and Social Research Council.

  • Fouad, N. A., & Singh, R. (2011). Stemming the tide: why women leave engineering: center for the study of the workplace report. Milwaukee: University of Wisconsin.

    Google Scholar 

  • Gilmartin, S. K., Li, E., & Aschbacher, P. (2006). The relationship between secondary students’ interest in physical science or engineering, science class experiences, and family contexts: variations by gender and race/ethnicity. Journal of Women and Minorities in Science and Engineering, 12(2–3), 179–207.

    Article  Google Scholar 

  • Halpern, D., Aronson, J., Reimer, N., Simpkins, S., Star, J., & Wentzel, K. (2007). Encouraging girls in math and science (NCER 2003–2007). Washington: National Center for Education Research, Institute of Education Sciences, U.S. Department of Education.

    Google Scholar 

  • Instructional Assessment Resources. (2011). Assess teaching: response rates. http://www.utexas.edu/academic/ctl/assessment/iar/teaching/gather/method/survey-Response.php. Retrieved April 15, 2013.

  • I-SWEEEP. (2013). About I-SWEEEP: our mission. http://www.isweeep.org/about-us/overview. Retrieved May 10, 2013.

  • Jerald, C. D. (2009). Defining a 21st century education. http://www.centerforpubliceducation.org/Learn-About/21st-Century/Defining-a-21st-Century-Education-Full-Report-PDF.pdf. Retrieved May 15, 2013.

  • Kidd, G., & Naylor, F. (1991). The predictive power of measured interests in tertiary course choice: the case of science. Australian Journal of Education, 35(3), 261–272.

    Article  Google Scholar 

  • Kuechler, W. L., McLeod, A., & Simkin, M. G. (2009). Why don’t more students major in IS? Decision Sciences Journal of Innovative Education, 7(2), 463–488.

    Article  Google Scholar 

  • Kutnick, P. J., Lee, P. Y., & Chan, Y. Y. (2012). Engineering education opportunities, perception, and career choice of secondary school students in Hong Kong SAR, China. Paper presented at the ASEE Annual Conference and Exposition San Antonio, Texas.

  • Lee, Y., & Lee, S. J. (2006). The competitiveness of the information systems major: an analytic hierarchy process. Journal of Information Sytems Education, 17(2), 211–222.

    Google Scholar 

  • Lent, R. W., Brown, S., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79–122.

    Article  Google Scholar 

  • Lent, R. W., Brown, S., & Hackett, G. (2000). Contextual supports and barriers to career choice: a social cognitive analysis. Journal of Counseling Psychology, 47(1), 36–49.

    Article  Google Scholar 

  • Lent, R. W., Lopez, A. M., Lopez, F. G., & Sheu, H.-B. (2008). Social cognitive career theory and the prediction of interests and choice goals in the computing disciplines. Journal of Vocational Behavior, 73(1), 52–62. doi:10.1016/j.jvb.2008.01.002.

    Article  Google Scholar 

  • Levy, F., & Murnane, R. J. (2004). The new division of labor: how computers are creating the next job market. Princeton: Princeton University.

  • Lindahl, B. (2007). A longitudinal study of students’ attitudes towards science and choice of career. Paper presented at the 80th NARST International Conference, New Orleans, LA.

  • Maarschalk, J. (1988). Scientific literacy and informal science teaching. Journal of Research in Science Teaching, 25(2), 135–146.

    Article  Google Scholar 

  • Malgwi, C. A., Howe, M. A., & Burnaby, P. A. (2005). Influences on students’ choice of college major. Journal of Education for Business, 80(5), 275–282.

    Article  Google Scholar 

  • Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95(5), 877–907.

    Article  Google Scholar 

  • McGee-Brown, M. J. (n.d.). Science Olympiad: the role of competition in collaborative science inquiry. http://www.soinc.org/sites/default/files/uploaded_files/NSFcompres.pdf. Retrieved July 3, 2013.

  • Microsoft Corporation. (2011). STEM perceptions: student & parent study. http://www.microsoft.com/en-us/news/press/2011/sep11/09-07MSSTEMSurveyPR.aspx. Retrieved June 16, 2013.

  • Munro, M., & Elsom, D. (2000). Choosing science at 16: the influences of science teachers and careers advisers on students decisions about science subjects and science and technology careers. Cambridge: CRAC.

    Google Scholar 

  • Murphy, C., & Beggs, J. (2005). Primary science in the UK: a scoping study. Final report to the Wellcome Trust. London: Wellcome Trust.

    Google Scholar 

  • Myers, R. E., & Fouts, J. T. (1992). A cluster analysis of high school science classroom environments and attitude toward science. Journal of Research in Science Teaching, 29(9), 929–937.

    Article  Google Scholar 

  • National Center for Education Statistics. (2009). Stats in brief: students who study science, technology, engineering, and mathematics (STEM) in postsecondary education. http://nces.ed.gov/pubs2009/2009161.pdf. Retrieved April 6, 2013.

  • National Research Council. (2009). Learning science in informal environments: people, places, and pursuits. http://www.nap.edu/catalog.php?record_id=12190. Retrieved April 5, 2013.

  • National Science Board. (2007). National action plan: for addressing the critical needs of the U.S. science, technology, engineering, and mathematics education system. http://www.nsf.gov/nsb/documents/2007/stem_action.pdf. Retrieved April 5, 2013.

  • National Science Foundation. (2008). Science and engineering degrees (1996–2008). http://www.nsf.gov/statistics/nsf11316/pdf/tab11.pdf. Retrieved from April 20, 2013.

  • Navarro, R. L., Flores, L. Y., & Worthington, R. L. (2007). Mexican American middle school students’ goal intentions in mathematics and science: a test of social cognitive career theory. Journal of Counseling Psychology, 54(3), 320–335. doi:10.1037/0022-0167.54.3.320.

    Article  Google Scholar 

  • Noel, M., Michaels, C., & Levas, M. G. (2003). The relationship of personality traits and self-monitoring behavior to choice of business major. Journal of Education for Business, 78(3), 153–157.

    Article  Google Scholar 

  • Oakes, J. (1990). Opportunities, achievement, and choice: women and minority students in science and mathematics. Review of Educational Research, 16, 153–222.

    Google Scholar 

  • Partnership for 21st Century Skills. (2009). The MILE guide: milestones for improving learning & education. http://www.p21.org/storage/documents/MILE_Guide_091101.pdf. Retrieved March 15, 2013.

  • Ricks, M. M. (2006). A study of the impact of an informal science education program on middle school students’ science knowledge, science attitude, STEM high school and college course selections, and career decisions. Unpublished Dissertation. The University of Texas at Austin.

  • Robelen, E. W. (2011). Awareness grows of importance of learning science beyond school. Education Week, 30(27), 2–5.

    Google Scholar 

  • Sabot, R. H., & Wakeman-Linn, J. (1991). Grade inflation and course choice. Journal of Economic Perspectives, 05(01), 159–170.

    Article  Google Scholar 

  • Sahin, A. (2013). STEM clubs and science fair competitions: effects on post-secondary matriculation. Journal of STEM Education: Innovations and Research, 14(1), 5–11.

    Google Scholar 

  • Sahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 13–26.

    Google Scholar 

  • Sawyer, R. K. (2006). The Cambridge handbook of the learning sciences. New York: Cambridge University.

  • Schaub, M., & Tokar, D. M. (2005). The role of personality and learning experiences in social cognitive career theory. Journal of Vocational Behavior, 66(2), 304–325. doi:10.1016/j.jvb.2004.09.005.

    Article  Google Scholar 

  • Schleicher, A. (2007). Elevating performance in a ‘Flat World’. Education Week, 26(17), 79–82.

  • Schweingruber, H. A., & Fenichel, M. (2010). Surrounded by Science: Learning Science in Informal Environments. National Academies Press.

  • Sheu, H.-B., Lent, R. W., Brown, S. D., Miller, M. J., Hennessy, K. D., & Duffy, R. D. (2010). Testing the choice model of social cognitive career theory across Holland themes: a meta-analytic path analysis. Journal of Vocational Behavior, 76(2), 252–264. doi:10.1016/j.jvb.2009.10.015.

    Article  Google Scholar 

  • Silva, E. (2008). Online discussion of measuring skills for the 21st century. http://www.educationsector.org/discussions/discussions_show.htm?discussion_id=716323. Retrieved June 23, 2013.

  • Stake, J. L. (2006). Pedagogy and student change in the women’s and gender studies classroom. Gender and Education, 18(2), 199–212.

    Article  Google Scholar 

  • Sullivan, F. R. (2007). Robotics and science literacy: thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373–394.

    Article  Google Scholar 

  • Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science, 312, 1143–1144.

    Article  Google Scholar 

  • Tamir, P. (1990). Factors associated with the relationship between formal, informal, and nonformal science learning. Journal of Environmental Education, 22(2), 34–42.

    Article  Google Scholar 

  • Trusty, J. (2002). Effects of high school course-taking and other variables on choice of science and mathematics college majors. Journal of Counseling and Development, 80(4), 464–474.

    Article  Google Scholar 

  • U.S. Department of Education. (2007). Report of the academic competitiveness council. http://coalition4evidence.org/wp-content/uploads/ACC-report-final.pdf. Retrieved from July 13, 2013.

  • Wagner, T. (2008). Rigor redefined. Educational Leadership, 66(2), 20–24.

    Google Scholar 

  • Wang, J., & Staver, J. R. (2001). Examining relationships between factors of science education and student career aspiration. Journal of Educational Research, 94(5), 312–319.

    Article  Google Scholar 

  • Ware, N. C., & Lee, V. E. (1988). Sex differences in choice of college science majors. American Educational Research Journal, 25(4), 593–614.

    Article  Google Scholar 

  • Williams, C. M., & Subich, L. M. (2006). The gendered nature of career related learning experiences: a social cognitive career theory perspective. Journal of Vocational Behavior, 69(2), 262–275. doi:10.1016/j.jvb.2006.02.007.

    Article  Google Scholar 

  • Wirt, J. L. (2011). An analysis of science Olympiad participants’ perceptions regarding their experience with the science and engineering academic competition. Retrieved from http://scholarship.shu.edu/dissertations/26/.June 1, 2013.

  • Yoder, B. L. (2012). Engineering by the numbers. Waschington: American Society for Engineering Education.

    Google Scholar 

  • Zhang, W. (2007). Why IS: understanding undergraduate students’ intentions to choose an information systems major. Journal of Information Systems Education, 18(4), 447–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpaslan Sahin.

Appendix

Appendix

Determining influences of science competitions (DISC) survey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, A., Gulacar, O. & Stuessy, C. High School Students’ Perceptions of the Effects of International Science Olympiad on Their STEM Career Aspirations and Twenty-First Century Skill Development. Res Sci Educ 45, 785–805 (2015). https://doi.org/10.1007/s11165-014-9439-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-014-9439-5

Keywords

Navigation