Advertisement

Research in Science Education

, Volume 43, Issue 6, pp 2477–2496 | Cite as

What Do Students “Construct” According to Constructivism in Science Education?

  • Manuel BächtoldEmail author
Article

Abstract

This paper aims at shedding light on what students can “construct” when they learn science and how this construction process may be supported. Constructivism is a pluralist theory of science education. As a consequence, I support, there are several points of view concerning this construction process. Firstly, I stress that constructivism is rooted in two fields, psychology of cognitive development and epistemology, which leads to two ways of describing the construction process: either as a process of enrichment and/or reorganization of the cognitive structures at the mental level, or as a process of building or development of models or theories at the symbolic level. Secondly, I argue that the usual distinction between “personal constructivism” (PC) and “social constructivism” (SC) originates in a difference of model of reference: the one of PC is Piaget’s description of “spontaneous” concepts, assumed to be constructed by students on their own when interacting with their material environment, the one of SC is Vygotsky’s description of scientific concepts, assumed to be introduced by the teacher by means of verbal communication. Thirdly, I support the idea that, within SC, there are in fact two trends: one, in line with Piaget’s work, demonstrates how cooperation among students affects the development of each individual’s cognitive structures; the other, in line with Vygotsky’s work, claims that students can understand and master new models only if they are introduced to the scientific culture by their teacher. Fourthly, I draw attention to the process of “problem construction” identified by some French authors. Finally, I advocate for an integrated approach in science education, taking into account all the facets of science learning and teaching mentioned above and emphasizing their differences as well as their interrelations. Some suggestions intended to improve the efficiency of science teaching are made.

Keywords

Science Learning Science Teaching Personal Constructivism Social Constructivism Cooperation Enculturation Problem construction 

References

  1. Australian Academy of Science. (2005). Primary connections: plants in action. Canberra: Australian Academy of Science.Google Scholar
  2. Bachelard, G. (1999 [1934]). Le nouvel esprit scientifique. Paris: Presses Universitaires de France.Google Scholar
  3. Bachelard, G. (2004 [1938]). La formation de lesprit scientifique: contribution à une psychanalyse de la connaissance. Paris: Vrin.Google Scholar
  4. Bachelard, G. (1994 [1949]). Le rationalisme appliqué. Paris: Presses Universitaires de France.Google Scholar
  5. Bächtold, M. (2012). Les fondements constructivistes de l’enseignement des sciences basé sur l’investigation. Tréma, 38, 7–39.Google Scholar
  6. Baviskar, S., Hartle, T., & Whitney, T. (2009). Essential criteria to characterize constructivist teaching: derived from a review of the literature and applied to five constructivist-teaching method articles. International Journal of Science Education, 31(4), 541–550.CrossRefGoogle Scholar
  7. Brousseau, G. (1998 [1970–1990]). Théorie des situations didactiques. Grenoble: La pensée sauvage.Google Scholar
  8. Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Chin, C., & Chia, L.-G. (2004). Problem-based learning: using students’ questions to drive knowledge construction. Science Education, 88, 707–727.CrossRefGoogle Scholar
  10. DiSessa, A., & Sherin, B. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191.CrossRefGoogle Scholar
  11. Doise, W., & Mugny, G. (1981). Le développement social de l’intelligence. Paris: Interéditions.Google Scholar
  12. Doise, W., Mugny, G., & Perret-Clermont, A. (1975). Social interaction and the development of cognitive operation. European Journal of Social Psychology, 5, 367–383.CrossRefGoogle Scholar
  13. Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.CrossRefGoogle Scholar
  14. Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61–84.CrossRefGoogle Scholar
  15. Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children’s ideas in science. Buckingham: Open University Press.Google Scholar
  16. Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in Science. Studies in Science Education, 13, 105–122.CrossRefGoogle Scholar
  17. Duit, R. (1995). The constructivist view: a fashionable and fruitful paradigm for science education. In L. Steffe & J. Gale (Eds.), Constructivism in education (pp. 271–285). Hillsdale: Erlbaum.Google Scholar
  18. Duit, R. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.CrossRefGoogle Scholar
  19. Dumas-Carré, A., & Goffard, M. (1997). Rénover les activités de résolution de problèmes en physique: concepts et demarches. Paris: Armand Colin.Google Scholar
  20. Fabre, M., & Orange, C. (1997). Construction des problèmes et franchissements d’obstacles. Aster, 24, 37–57.CrossRefGoogle Scholar
  21. Fosnot, C., & Perry, R. (2005). Constructivism: a psychological theory of learning. In C. Fosnot (Ed.), Constructivism: theory, perspectives, and practice (pp. 8–38). New York and London: Teachers College Press.Google Scholar
  22. Gallagher, S., Stepien, W., Sher, B., & Workman, D. (1995). Implementing problem-based learning in science classroom. School Science and Mathematics, 95(3), 136–146.CrossRefGoogle Scholar
  23. Garrison, J. (1997). An alternative to von Glaserfeld’s subjectivism in science education: Deweyan social constructivism. Science Education, 6(3), 301–312.CrossRefGoogle Scholar
  24. Geelan, D. (1997). Epistemological anarchy and the many forms of constructivism. Science Education, 6, 15–28.CrossRefGoogle Scholar
  25. Gil-Perez, D. (1993). Apprendre les sciences par une recherche de démarche scientifique. Aster, 17, 41–64.CrossRefGoogle Scholar
  26. Gil-Perez, D., Martinez-Torregrosa, J., & Senent-Pérez, F. (1987). La résolution de problèmes comme activité de recherché: un instrument de changement conceptuel et méthodologique. Petit x, 14–15, 25–38.Google Scholar
  27. Gobert, J., & Buckley, B. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891–894.CrossRefGoogle Scholar
  28. Good, R. (1993). The many forms of constructivism. Journal of Research in Science Teaching, 30(9), 1015.CrossRefGoogle Scholar
  29. Hashweh, M. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8(3), 229–249.CrossRefGoogle Scholar
  30. Jenkins, E. (2000). Constructivism in school science education: powerful model or the most dangerous intellectual tendency? Science Education, 9, 599–610.CrossRefGoogle Scholar
  31. Johsua, S., & Dupin, J.-J. (2003). Introduction à la didactique des sciences et des mathématiques. Paris: Presses Universitaires de France.Google Scholar
  32. Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimally guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.CrossRefGoogle Scholar
  33. Kotzee, B. (2010). Seven posers in the constructivist classroom. London Review of Education, 8(2), 177–187.CrossRefGoogle Scholar
  34. Kruckeberg, R. (2006). A Deweyan perspective on science education: constructivism, experience, and why we learn science. Science Education, 15(1), 1–30.Google Scholar
  35. Larcher, C., Chomat, A., & Méheut, M. (1990). A la recherche d’une stratégie pour modéliser la matière dans ses différents états. Revue Française de Pédagogie, 93(1), 51–61.CrossRefGoogle Scholar
  36. Laurence, S., & Margolis, E. (1999). Concepts and cognitive science. In S. Laurence & E. Margolis (Eds.), Concepts: core reading (pp. 3–81). Cambridge: MIT Press.Google Scholar
  37. Linder, C. (1993). A challenge to conceptual change. Science Education, 77(3), 293–300.CrossRefGoogle Scholar
  38. Loyens, S., & Gijbels, D. (2008). Understanding the effects of constructivist learning environments: introducing a multi-directional approach. Instructional Science, 36, 351–357.CrossRefGoogle Scholar
  39. Martinand, J.-L. (1986). Connaître et transformer la matière: des objectifs pour l’initiation aux sciences et techniques. Berne: Peter Lang.Google Scholar
  40. Matthews, M. (1997). Introductory comments on philosophy and constructivism in science education. Science Education, 6(1–2), 5–14.Google Scholar
  41. Matthews, M. (1998). Preface. In M. Matthews (Ed.), Constructivism in science education: a philosophical examination (pp. 9–12). Dordrecht: Kluwer.CrossRefGoogle Scholar
  42. Matthews, M. (2000). Constructivism in science and mathematics education. In D. Phillips (Ed.), National Society for the Study of Education, 99th Yearbook (pp. 161–192). Chicago: University of Chicago Press.Google Scholar
  43. Mayer, R. (2009). Constructivism as a theory of learning versus constructivism as a prescription for instruction. In S. Tobias & T. Duffy (Eds.), Constructivist instruction: success or failure? (pp. 184–200). New York: Routledge.Google Scholar
  44. Mead, G. (1932). The philosophy of the present. LaSalle: Open Court.Google Scholar
  45. Mead, G. (1938). The philosophy of the act. Chicago: University of Chicago.Google Scholar
  46. Mercer, N. (2008). The seeds of time: why classroom dialogue needs a temporal analysis. The Journal of the Learning Sciences, 17(1), 33–59.CrossRefGoogle Scholar
  47. Millar, R. (1989). Constructive criticisms. International Journal of Science Education, 11(5), 587–596.CrossRefGoogle Scholar
  48. Ministère de l’éducation nationale (France) (2000). Plan de rénovation de l’enseignement des sciences et de la technologie à l’école. Bulletin Officiel de lEducation Nationale, n°23 du 15 juin 2000.Google Scholar
  49. National Research Council. (1996). National science education standards. Washington: National Academy Press.Google Scholar
  50. Nola, R. (1997). Constructivism in science and in science education: a philosophical critique. Science Education, 6(1–2), 55–83.Google Scholar
  51. Northfield, J., & Gunstone, R. (1983). Research on alternative frameworks: implication for science teacher education. Research in Science Education, 13, 185–191.CrossRefGoogle Scholar
  52. Osborne, J. (1996). Beyond constructivism. Science Education, 80(1), 53–82.CrossRefGoogle Scholar
  53. Phillips, D. (1995). The good, the bad and the ugly: the many faces of constructivism. Educational Researcher, 24(7), 5–12.CrossRefGoogle Scholar
  54. Piaget, J. (1965). Etudes sociologiques. Genève: Droz.Google Scholar
  55. Piaget, J., & Inhelder, B. (1966). La psychologie de l’enfant. Paris: Presses Universitaires de France.Google Scholar
  56. Piaget, J. (1969). Psychologie et pédagogie. Paris: Denoël.Google Scholar
  57. Piaget, J. (1977a [1936]). La naissance de lintelligence chez lenfant. Neuchâtel, Paris: Delachaux & Niestlé.Google Scholar
  58. Piaget, J. (1977b [1937]). La construction du réel chez lenfant. Lausanne: Delachaux & Niestlé.Google Scholar
  59. Piaget, J. (1997 [1962]). Commentaire sur les remarques critiques de Vygotski concernant 'Le langage et la pensée chez l'enfant' et Le jugement et le raisonnement chez l'enfant'. In L. Vygotsky (Ed.), Thought and language (pp. 501–516). Cambridge: MIT Press.Google Scholar
  60. Pizzini, E., Shepardson, D., & Abell, S. (1989). A rationale for the development of a problem solving model of instruction in science education. Science Education, 73(5), 523–534.CrossRefGoogle Scholar
  61. Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211–227.CrossRefGoogle Scholar
  62. Robardet, G. (1990). Enseigner les sciences physiques à partir de situations-problèmes. Bulletin de l’Union des Physiciens, 84, 17–28.Google Scholar
  63. Robardet, G. (2001). Quelle démarche expérimentale en classe de physique? Notion de situation-problème. Bulletin de l’Union des Physiciens, 95, 1173–1190.Google Scholar
  64. Robardet, G., & Guillaud, J.-G. (1995). Éléments d’épistémologie et de didactique des sciences physiques: de la recherche à la pratique. Grenoble: Publications de l’IUFM de Grenoble.Google Scholar
  65. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: a renewed pedagogy for the future of Europe. Brussels: Directorate General for Research, European Commission.Google Scholar
  66. Roth, W.-M., Tobin, K., & Ritchie, S. (2008). Time and temporality as mediators of science learning. Science Education, 92, 115–140.CrossRefGoogle Scholar
  67. Savery, J., & Duffy, T. (1995). Problem based learning: an instructional model and its constructivist framework. Educational Technology, 35(5), 31–38.Google Scholar
  68. Schmidt, H., Loyens, S., van Gog, T., & Paas, F. (2007). Problem-based is compatible with human cognitive architecture: commentary on Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 91–97.CrossRefGoogle Scholar
  69. Smith, J., diSessa, A., & Roschelle, J. (1993). Misconceptions reconsidered: a constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.CrossRefGoogle Scholar
  70. Staver, J. (1998). Constructivism: sound theory for explicating the practice of science and science teaching. Journal of Research in Science Teaching, 35(5), 501–520.CrossRefGoogle Scholar
  71. Solomon, J. (1994). The rise and fall of constructivism. Studies in Science Education, 23, 1–19.CrossRefGoogle Scholar
  72. Tiberghien, A., & Buty, C. (2007). Studying science teaching practices in relation to learning: times scales of teaching phenomena. In R. Pintó & D. Couso (Eds.), Contribution from science education research (pp. 59–75). Dordrecht: Springer.CrossRefGoogle Scholar
  73. Tobias, S. (2009). An eclectic appraisal of the success or failure of constructivist instruction. In S. Tobias & T. Duffy (Eds.), Constructivist instruction: success or failure? (pp. 335–350). New York: Routledge.Google Scholar
  74. Tyson, L., Venville, G., Harrison, A., & Treagust, D. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387–404.CrossRefGoogle Scholar
  75. Viennot, L. (1996). Raisonner en physique: la part du sens commun. Bruxelles: De Boeck.Google Scholar
  76. Von Glasersfeld, E. (1995). Radical constructivism: a way of knowing and learning. London, Washington: The Falmer Press.CrossRefGoogle Scholar
  77. Von Glasersfeld, E. (1998 [1989]). Cognition, construction of knowledge and teaching. In M. Matthews (Ed.), Constructivism in science education: a philosophical examination (pp. 11–30), Dordrecht: Kluwer.Google Scholar
  78. Vosniadou, S., & Ioannides, C. (1998). From conceptual change to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213–1230.CrossRefGoogle Scholar
  79. Vygotsky, L. (1986 [1934]). Thought and language (Engl. transl.). Cambridge: MIT Press.Google Scholar
  80. Watts, D. (1983). Some alternative views of energy. Physics Education, 18, 213–217.CrossRefGoogle Scholar
  81. White, R., & Gunstone, R. (1989). Metalearning and conceptual change. International Journal of Science Education, 11, 577–586.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.LIRDEF (EA 3749)Universités Montpellier 2 et Montpellier 3MontpellierFrance
  2. 2.IUFMUniversité Montpellier 2Montpellier Cédex 5France

Personalised recommendations