Research in Science Education

, Volume 43, Issue 6, pp 2235–2256 | Cite as

Students Explaining Science—Assessment of Science Communication Competence

  • Christoph KulgemeyerEmail author
  • Horst Schecker


Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is based on an expert–novice dialog: an older student (explainer, expert) explains a physics phenomenon to a younger peer (addressee, novice) in a controlled test setting. The explanations are video-recorded and analysed by qualitative content analysis. The method was applied in a study with 46 secondary school students as explainers. Our aims were (a) to evaluate whether our model covers the relevant features of SCC, (b) to validate the assessment method and (c) to find characteristics of addressee-adequate explanations. A performance index was calculated to quantify the explainers’ levels of competence on an ordinal scale. We present qualitative and quantitative evidence that the index is adequate for assessment purposes. It correlates with results from a written SCC test and a perspective taking test (convergent validity). Addressee-adequate explanations can be characterized by use of graphical representations and deliberate switches between scientific and everyday language.


Communication Explaining Scientific explanations Cognition Volition Assessment 



Parts of this paper were written during a stay of the first author at the Science and Mathematics Education Centre (SMEC), Curtin University of Technology, Perth, Australia. The authors gratefully acknowledge Prof David F. Treagust and Dr A. L. Chandrasegaran for all their supporting comments and advices. The authors address special thanks to Christine Rauch, M. Ed., for proofreading.


  1. ACARA (2012). The Australian Curriculum—Science. Australian Curriculum, Assessment and Reporting Authority.Google Scholar
  2. Aikenhead, G. S. (2001). Science communication: A cross cultural event. In S. M. Stocklmayer, M. G. Gore, & C. Bryant (Eds.), Science communication in theory and practice (pp. 23–46). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  3. Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to osborne and patterson. Science Education, 96(5), 808–813.CrossRefGoogle Scholar
  4. Bernholt, S., Eggert, S., & Kulgemeyer, C. (2012). Capturing the diversity of students’ competences in science classrooms: Differences and commonalities of three complementary approaches. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 173–201). Münster: Waxmann.Google Scholar
  5. Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Heidelberg: Springer Medizin.CrossRefGoogle Scholar
  6. Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669.CrossRefGoogle Scholar
  7. Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from learning science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 437–498.CrossRefGoogle Scholar
  8. Brown, G. (2006). Explaining. In O. Hargie (Ed.), The handbook of communication skills (pp. 195–228). East Sussex: Taylor & Francis.Google Scholar
  9. Bucchi, M., & Trench, B. (Eds.). (2008). Handbook of public communication of science and technology. Abingdon: Routledge.Google Scholar
  10. Campbell, D., & Fiske, D. (1959). Convergent and discriminant validation by the multitrait multimethod matrix. Psychological Bulletin, 56(2), 81–105.CrossRefGoogle Scholar
  11. Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation to promote students’ ability to use multiple representation when describing and explaining chemical reactions. Research in Science Education, 38, 237–248.CrossRefGoogle Scholar
  12. Clark, H. (1996). Using language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. CSMEE (Center for Science, Mathematics, and Engineering Education). (1996). National science education standards. Washington: National Academy Press.Google Scholar
  14. Davis, M. (1980). A multidimensional approach to individual differences in empathy. Catalogue of Selected Documents in Psychology, 10MS. 2124, 85.Google Scholar
  15. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classroom. Science Education, 84(3), 287–312.CrossRefGoogle Scholar
  16. Edmondston, J., Dawson, V., & Schibeci, R. (2010). Undergraduate biotechnology students’ views of science education. International Journal of Science Education, 32(18), 2451–2474.CrossRefGoogle Scholar
  17. Einhaus, E. (2007). Schülerkompetenzen im Bereich Wärmelehre. Berlin: Logos.Google Scholar
  18. Einhaus, E. & Schecker, H. (2007). Modelling science competencies. Proceedings of the Sixth International ESERA Conference (CD).Google Scholar
  19. Gage, N. (1968). The microcriterion of effectiveness in explaining. In N. Gage (Ed.), Explorations of the teacher’s effectiveness in explaining, Technical Report No. 4 (pp. 1–8). Stanford Center for Research and Developement in Teaching.Google Scholar
  20. Gilbert, J. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976.CrossRefGoogle Scholar
  21. Gilbert, J. & Treagust, D. F. (2009). Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. Gilbert & D. Treagust (Ed.), Multiple representations in chemical education. New York: Springer.Google Scholar
  22. Hafner, R. (2007). Standards in science education in Australia. In D. Waddington, P. Nentwig, & S. Schanze (Eds.), Making it comparable. Standards in science education (pp. 23–60). Münster: Waxmann.Google Scholar
  23. Kauertz, A. (2008). Schwierigkeitserzeugende Merkmale physikalischer Leistungstestaufgaben. Berlin: Logos.Google Scholar
  24. Kauertz, A., Fischer, H., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Standardbezogene Kompetenzmodellierung in den Naturwissenschaften der Sekundarstufe I. Zeitschrift für Didaktik der Naturwissenschaften, 16, 135–155.Google Scholar
  25. King, A., Staffieri, A., & Adelgais, A. (1998). Mutual peer tutoring: effects of structuring tutorial interaction to scaffold peer learning. Journal of Educational Psychology, 90(1), 134–152.CrossRefGoogle Scholar
  26. Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., et al. (2003). Zur Entwicklung nationaler Bildungsstandards—Expertise. Bundesministerium für Bildung und Forschung (BMBF).Google Scholar
  27. KMK (Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland). (2005). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. München: Luchterhand.Google Scholar
  28. Kremer, K., Fischer, H., Kauertz, A., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Assessment of standard-based learning outcomes in science education: Perspectives from the german project esnas. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 201–218). Münster: Waxmann.Google Scholar
  29. Kulgemeyer, C. (2010). Physikalische Kommunikationskompetenz. Modellierung und Diagnostik. Berlin: Logos.Google Scholar
  30. Kulgemeyer, C. (2011). Physik erklären als Rollenspiel. Adressatengemäßes Kommunizieren fördern und diagnostizieren. Naturwissenschaften im Unterricht Physik, 22(123/124), 70–74.Google Scholar
  31. Kulgemeyer, C., & Schecker, H. (2009). Physics communication competence: on the development of a domain-specific concept of communication. Zeitschrift für Didaktik der Naturwissenschaften, 15, 131–153.Google Scholar
  32. Kulgemeyer, C., & Schecker, H. (2012). Physikalische Kommunikationskompetenz—Empirische Validierung eines normativen Modells. Zeitschrift für Didaktik der Naturwissenschaften, 18, 29–54.Google Scholar
  33. Kunter, M., Schümer, G., Artelt, C., Baumert, J., Klieme, E., Neubrand, M., et al. (2002). PISA 2000—Dokumentation der Erhebungsinstrumente. MPI für Bildungsforschung.Google Scholar
  34. Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research [Online Journal], 1(2). Available at: Date of Access 21 Sep 2010.
  35. MCEETYA (Ministerial Council on Education, Employment, Training and Youth Affairs) (2005). National assessment: Program, science, year 6, 2003: Technical report. MCEETYA.Google Scholar
  36. McNeill, K. (2009). Teachers’ use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233–268.CrossRefGoogle Scholar
  37. McNeill, K. (2011). Elementary students’ views of explanation, argumentation and evidence and abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793–823.CrossRefGoogle Scholar
  38. McNeill, K., & Krajcik, J. (2007). Inquiry and scientific explanations: Helping students use evidence and reasoning. In J. Luft, R. Bell, & J. Gess-Newsome (Eds.), Science as an inquiry in the secondary setting (pp. 121–134). USA: National Science Teachers Association.Google Scholar
  39. Merten, K. (1995). Konstruktivismus als Theorie für die Kommunikationswissenschaft. MedienJournal, 4, 3–21.Google Scholar
  40. Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. London: Routledge and Kegan Paul.Google Scholar
  41. Ogborn, J., Kress, G., Martins, I., & McGillicuddy, K. (1996). Explaining science in the classroom. Buckingham: Open University Press.Google Scholar
  42. Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: a necessary distinction? Science Education, 95(4), 627–638.CrossRefGoogle Scholar
  43. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRefGoogle Scholar
  44. Rincke, K. (2011). It’s rather like learning a language: development of talk and conceptual understanding in mechanics lessons. Internationale Journal of Science Education, 33(2), 229–258.CrossRefGoogle Scholar
  45. Rusch, G. (1999). Eine Kommunikationstheorie für kognitive Systeme. In G. Rusch & S. Schmidt (Eds.), Konstruktivismus in der Medien- und Kommunikationswissenschaft (pp. 150–184). Frankfurt a. M.: Suhrkamp.Google Scholar
  46. Schecker, H. (2012). Standards, competencies and outcomes. A critical view. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 219–234). Münster: Waxmann.Google Scholar
  47. Schecker, H., & Parchmann, I. (2006). Modellierung naturwissenschaftlicher Kompetenz. Zeitschrift für Didaktik der Naturwissenschaften, 12, 45–66.Google Scholar
  48. Schecker, H., & Parchmann, I. (2007). Standards and competence models: The German situation. In D. Waddington, P. Nentwig, & S. Schanze (Eds.), Making it comparable. Standards in science education (pp. 147–164). Münster: Waxmann.Google Scholar
  49. Schmidt, M. (2008). Kompetenzmodellierung und –diagnostik im Themengebiet Energie der Sekundarstufe I. Entwicklung und Erprobung eines Testinventars. Berlin: Logos.Google Scholar
  50. Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: a rubric for measuring the effectiveness of scientific explanations. International Journal of Science Education, 30(11), 1441–1467.CrossRefGoogle Scholar
  51. Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(379–423), 623–656.CrossRefGoogle Scholar
  52. Shulman, L. (1987). Knowledge and teaching: foundations of the new reform. Harvard Education Review, 57(1), 1–22.Google Scholar
  53. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  54. Treagust, D., & Harrison, A. (1999). The genesis of effective science explanations for the classroom. In J. Loughran (Ed.), Researching teaching: methodologies and practices for understanding pedagogy (pp. 28–43). Abingdon: Routledge.Google Scholar
  55. Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.CrossRefGoogle Scholar
  56. Weinert, F. (2001). Concept of competence—A conceptual clarification. In D. S. Rychen & L. H. Salyanik (Eds.), Defining and selecting key competencies (pp. 45–65). Göttingen: Hogrefe & Huber.Google Scholar
  57. Wellenreuther, M. (2005). Lehren und Lernen - aber wie? Empirisch-experimentelle Forschung zum Lehren und Lernen im Unterricht. Hohengehren: Schneider.Google Scholar
  58. Zeidler, D. L., Osborne, J., Erduran, S., Simon, S., & Monk, M. (2003). The role of argument during discourse about socioscientific issues. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Science Education, Physics Education DepartmentUniversity of BremenBremenGermany

Personalised recommendations