Research in Science Education

, Volume 43, Issue 2, pp 479–506 | Cite as

Effects of Direct and Indirect Instruction on Fostering Decision-Making Competence in Socioscientific Issues

  • Florian Böttcher
  • Anke Meisert


In this study the effects of different learning environments on the promotion of decision-making competence for the socioscientific issue of genetically modified crops is investigated. The comparison focuses on direct vs. indirect instructions. Therefore on the one hand a sophisticated decision-making strategy was presented to the directly instructed experimental group (1) and had to be applied correctly. On the other hand indirectly instructed students had to invent an appropriate strategy by themselves (2) based on the given information and the structure of the problem context. Group discussions are analysed qualitatively in order (1) to outline how the given strategy was understood and its results were reflected on by the students and (2) to explore the characteristics of invented strategies and their degree of complexity. Results indicate that the direct instruction of complex decision-making strategies may lead to a lack of understanding of the decision process when the given strategy is applied and therefore may cause rejection of the final decision. Indirectly instructed students were able to invent sophisticated decision-making strategies containing compensatory trade-offs. It is concluded that when directly instructing complex decision-making strategies, essential parts of reflection have to be integrated in order to gain greater transparency. Accordingly, empirical evidence has been found to consider indirect instruction as a possible way to foster decision-making strategies for complex socioscientific issues even if compensatory procedures are considered to be necessary.


Indirect instruction Decision-making Socioscientific issues Genetically modified crops 


  1. American Association for the Advancement of Science. (1989). Science for all Americans. Project 2061. New York: Oxford University Press.Google Scholar
  2. Anderson, T., Howe, C., Soden, R., Halliday, J., & Low, J. (2001). Peer interaction and the learning of critical thinking skills in further education students. Instructional Science, 29, 1–32.CrossRefGoogle Scholar
  3. Betsch, T., & Haberstroh, S. (2005). Current research on routine decision-making: Advances and prospects. In T. Betsch & S. Haberstroh (Eds.), The routines of decision-making. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  4. BMELV - Federal Ministry of Food, Agriculture and Consumer Protection (2010). Aigner prohibits cultivation of MON810, pressrelease 063, Pressemitteilungen/EN/063-MON810.html, 16.12.2010.
  5. Bögeholz, S. (2001). Explizite Bewertung: Ein Ansatz zur Förderung ökologischer Urteilskompetenz im Unterricht. In H. Bayrhuber, U. Harms, R. Hedewig, C. Hößle, S. Klautke, R. Klee, A. Kroß, J. Mayer, H. Prechtl, J. Schletter & K. Schlüter. (Eds.), Biowissenschaften in Schule und Öffentlichkeit. Jubiläumstagung zum 25jährigen Bestehen der Sektion Biologiedidaktik im Verband Deutscher Biologen (vdbiol).Google Scholar
  6. Bögeholz, S. (2006). Explizites Bewerten und Urteilen. Praxis der Naturwissenschaften – Biologie, 1(55), 17–24.Google Scholar
  7. Bögeholz, S., & Barkmann, J. (2003). Ökologische Bewertungskompetenz für reale Entscheidungssituationen: Gestalten bei faktischer und ethischer Komplexität. In DGU-Nachrichten, H. 27.Google Scholar
  8. Bögeholz, S., & Barkmann, J. (2005). Rational choice and beyond: Handlungsorientierende Kompetenzen für den Umgang mit faktischer und ethischer Komplexität. In R. Klee, A. Sandmann, & H. Vogt (Eds.), Lehr- und Lernforschung in der Biologiedidaktik. Innsbruck: StudienVerlag.Google Scholar
  9. Cubitt, R. (1995). Review – the adaptive decision maker. The Economic Journal, 105(428), 235–237.CrossRefGoogle Scholar
  10. Dean, D., & Kuhn, D. (2007). Direct instruction vs. discovery: the long view. Science Education, 91, 384–397.CrossRefGoogle Scholar
  11. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classroom. Science Education, 84(3), 287–312.CrossRefGoogle Scholar
  12. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72.CrossRefGoogle Scholar
  13. Eggert, S. (2008). Bewertungskompetenz für den Biologieunterricht - Vom Modell zur empirischen Überprüfung. Dissertation. Georg-August-Universität Göttingen,, 17.10.2010.
  14. Eggert, S., & Bögeholz, S. (2010). Students’ use of decision making strategies with regard to socioscientific issues - an application of the Rasch partial credit model. Science Education, 94, 230–258.Google Scholar
  15. Eggert, S., & Hößle, C. (2006). Bewertungskompetenz im Biologieunterricht. Praxis der Naturwissenschaften, 1(55), 1–9.Google Scholar
  16. Eisenführ, F., & Weber, M. (2003). Rationales entscheiden. Berlin: Springer.Google Scholar
  17. Früh, W. (2001). Inhaltsanalyse. Konstanz: UVK.Google Scholar
  18. Gagne, R. M. (1984). Learning outcomes and their effects: Useful categories of human performance. American Psychologist, 39, 377–385.CrossRefGoogle Scholar
  19. Gaissmaier, W., & Gigerenzer, G. (2006). Wie funktioniert Intuition? In E. H. Witte (Ed.), Evolutionäre Sozialpsychologie und automatische Prozesse. Lengerich: Pabst Science.Google Scholar
  20. Gigerenzer, G. (2008). Rationality for mortals – how people cope with uncertainty. New York: Oxford University Press.Google Scholar
  21. Gijbels, D., et al. (2005). Effects of problem-based learning: a meta-analysis from the angle of assessment. Review of Educational Research, 75(1), 27–61.CrossRefGoogle Scholar
  22. Grace, M. (2008). Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31(4), 551–570.CrossRefGoogle Scholar
  23. Haidt, J. (2001). The emotional dog and its rational tail: a social intuitionist approach to moral judgement. Psychological Review, 108(4), 814–834.CrossRefGoogle Scholar
  24. Hmelo-Silver, C. (2004). Problem-based learning: what and how do students learn? Educational Psychology Review, 16(3), 235–266.CrossRefGoogle Scholar
  25. Hogan, K. (1999). Thinking aloud together: a test of an intervention to foster students’ collaborative scientific reasoning. Journal of Research in Science Teaching, 36(10), 1085–1109.CrossRefGoogle Scholar
  26. Hogarth, R. M. (2005). Deciding analytically or trusting your intuition? The advantages and disadvantages of analytic and intuitive thought. In T. Betsch & S. Haberstroh (Eds.), The routines of decision-making. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  27. Hong, J.-L., & Chang, N. K. (2004). Analysis of Korean high school students’ decision-making process in solving a problem involving biological knowledge. Research in Science Education, 34, 97–111.CrossRefGoogle Scholar
  28. Jiménez-Aleixandre, M.-P., & Pereiro-Muňoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision-making about environmental management. International Journal of Science Education, 24(11), 1171–1190.CrossRefGoogle Scholar
  29. Jungermann, H., Pfister, H.-R., & Fischer, K. (2005). Die Psychologie der Entscheidung. Heidelberg: Elsevier Spektrum Akademischer Verlag.Google Scholar
  30. Kekulé, A. (2009). Unkalkulierbares Risiko. ZEIT ONLINE, 14.4.2009,, 16.12.2010.
  31. Kirschner, P. A. (2002). Cognitive load theory: implications of cognitive load theory on the design of learning. Learning and Instruction, 12, 1–10.CrossRefGoogle Scholar
  32. Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86.CrossRefGoogle Scholar
  33. Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: effects of direct instruction and discovery learning. Psychological Science, 15, 661–667.CrossRefGoogle Scholar
  34. Knippels, M.-C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education. Utrecht: CD-β.Google Scholar
  35. Kolstø, S. D. (2000). Consensus projects: teaching science for citizenship. International Journal of Science Education, 22(6), 645–664.CrossRefGoogle Scholar
  36. Kolstø, S. D. (2001). Scientific literacy for citizenship: tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–310.CrossRefGoogle Scholar
  37. Kolstø, S. D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689–1716.CrossRefGoogle Scholar
  38. Kortland, K. (1996). Decision-making on science-related issues: The case of garbage in physical science – a problem-posing Approach. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe. London: Routledge.Google Scholar
  39. Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press).CrossRefGoogle Scholar
  40. Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9(5), 178–181.CrossRefGoogle Scholar
  41. Kuhn, D. (2001). How do people know? Psychological Science, 12(1), 1–8.CrossRefGoogle Scholar
  42. Kuhn, D. (2005). Education for thinking. Cambridge: Harvard University Press.Google Scholar
  43. Kuhn, D. (2007). Is direct instruction an answer to the right question. Educational Psychologist, 42(2), 109–113.CrossRefGoogle Scholar
  44. Kuhn, D., & Dean, D., Jr. (2004). Metacognition: a bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273.CrossRefGoogle Scholar
  45. Kuhn, D., & Dean, D. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16, 866–870.CrossRefGoogle Scholar
  46. Kuhn, D., & Pearsall, S. (1998). Relations between metastrategic knowledge and strategic performance. Cognitive Development, 13, 227–247.CrossRefGoogle Scholar
  47. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287–315.CrossRefGoogle Scholar
  48. Mayring, P. (2008). Qualitative Inhaltsanalyse - Grundlagen und Techniken. Weinheim und Basel: Beltz.Google Scholar
  49. Payne, J. W., Bettmann, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  50. Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167–182.CrossRefGoogle Scholar
  51. Ratcliffe, M., & Grace, M. (2003). Science education for citizenship. Maidenhead: Open University Press.Google Scholar
  52. Rieskamp, J., & Otto, P. E. (2006). SSL: a theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135(2), 207–236.CrossRefGoogle Scholar
  53. Rieskamp, J., Busemeyer, J. R., & Mellers, B. A. (2006). Extending the bounds of rationality: evidence and theories of preferential choice. Journal of Economic Literature, 44, 631–661.CrossRefGoogle Scholar
  54. Roberts, L., Wilson, M., & Draney, K. (1997). The SEPUP assessment system: An overview. BEAR Report Series, SA-97-1. Berkeley: University of California.Google Scholar
  55. Sadler, T. D. (2004). Moral and ethical dimensions of socioscientific decision-making as integral components of scientific literacy. The Science Educator, 13, 39–48.Google Scholar
  56. Sadler, T. D., & Donelly, L. A. (2006). Socioscientific argumentation: the effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.CrossRefGoogle Scholar
  57. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: construal and resolution of genetic engineering dilemmas. Science Education, 88, 4–27.CrossRefGoogle Scholar
  58. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision-making. Journal of Research in Science Teaching, 42(1), 112–138.CrossRefGoogle Scholar
  59. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37, 371–391.CrossRefGoogle Scholar
  60. Seethaler, S., & Linn, M. (2004). Genetically modified food in perspective: an inquiry-based curriculum to help middle school students make sense of tradeoffs. International Journal of Science Education, 26(14), 2004.Google Scholar
  61. Siegel, M. A. (2006). High school students’ decision making about sustainability. Environmental Education Research, 12(2), 201–215.CrossRefGoogle Scholar
  62. Sutherland, L. (2002). Developing problem solving expertise: the impact of instruction in a question analysis strategy. Learning and Instruction, 12, 155–187.CrossRefGoogle Scholar
  63. Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295–312.CrossRefGoogle Scholar
  64. Veenman, M. V. J., van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: conceptual and methodological considerations. Metacognition Learning, 1, 3–14.CrossRefGoogle Scholar
  65. Westenberg, M. R. M., & Koele, P. (1994). Multi-attribute evaluation processes: methodological and conceptual issues. Acta Psychologica, 87, 65–84.CrossRefGoogle Scholar
  66. Wilson, M., & Sloane, K. (2000). From principles to practice: an embedded assessment system. Applied Measurement in Education, 13(2), 181–208.CrossRefGoogle Scholar
  67. Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86, 343–367.CrossRefGoogle Scholar
  68. Zeidler, D. L., Osborne, J., Erduran, S., Simon, S., & Monk, M. (2003). The role of argument discourse about socioscientific issues. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education. Dordrecht: Academic Publishers.CrossRefGoogle Scholar
  69. Zohar, A., & David, A. B. (2008). Explicit teaching of meta-strategic knowledge in authentic classroom situations. Metacognition Learning, 3, 59–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Biology and ChemistryUniversity of HildesheimHildesheimGermany

Personalised recommendations