Advertisement

Research in Science Education

, Volume 40, Issue 4, pp 605–623 | Cite as

Conceptual Incoherence as a Result of the use of Multiple Historical Models in School Textbooks

  • Niklas M. Gericke
  • Mariana Hagberg
Article

Abstract

This paper explores the occurrence of conceptual incoherence in upper secondary school textbooks resulting from the use of multiple historical models. Swedish biology and chemistry textbooks, as well as a selection of books from English speaking countries, were examined. The purpose of the study was to identify which models are used to represent the phenomenon of gene function in textbooks and to investigate how these models relate to historical scientific models and subject matter contexts. Models constructed for specific use in textbooks were identified using concept mapping. The data were further analyzed by content analysis. The study shows that several different historical models are used in parallel in textbooks to describe gene function. Certain historical models were used more often then others and the most recent scientific views were rarely referred to in the textbooks. Hybrid models were used frequently, i.e. most of the models in the textbooks consisted of a number of components of several historical models. Since the various historical models were developed as part of different scientific frameworks, hybrid models exhibit conceptual incoherence, which may be a source of confusion for students. Furthermore, the use of different historical models was linked to particular subject contexts in the textbooks studied. The results from Swedish and international textbooks were similar, indicating the general applicability of our conclusions.

Keywords

Conceptual learning Genetics Historical models Models Textbooks Upper secondary school 

References

  1. American Association for the Advancement of Science. (1990). Science for all Americans. New York: Oxford University Press.Google Scholar
  2. American Association for the Advancement of Science. (1993). Benchmarks for science literacy: A Project 2061 report. New York: Oxford University Press.Google Scholar
  3. Andersson, S., Sonesson, A., Stålhandske, B., Tullberg, A., & Rydén, L. (2001). Gymnasiekemi B. Falköping: Liber AB.Google Scholar
  4. Borén, B., Larsson, M., Lif, L., Lillieborg, S., & Lindh, B. (2001). Kemiboken B. Borås: Liber AB.Google Scholar
  5. Chinn, A. C., & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Rotterdam: Sense.Google Scholar
  6. Dawkins, R. (1989). The selfish gene. Oxford: Oxford University Press.Google Scholar
  7. DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: a descriptive study. Journal of Research in Science Teaching, 32(2), 123–142. doi: 10.1002/tea.3660320204.CrossRefGoogle Scholar
  8. Di Giuseppe, M., Vavitas, A., Ritter, B., Fraser, D., Arora, A., & Lisser, B. (2003). Nelson biology 12. Toronto: Nelson Thomson Learning.Google Scholar
  9. Duit, R., & Treagust, D. F. (2003). Learning in science—From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 3–25). Dordrect: Kluwer Academic.Google Scholar
  10. Duschl, R. A. (2006). Relating history of science to learning and teaching science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science—Implications for teaching, learning, and teacher education (pp. 319–330). Dordrecht: Springer.Google Scholar
  11. Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2001). Kemi B temaboken. Aarhus: Bonnier Utbildning.Google Scholar
  12. Evans, B., Ladiges, P., McKenzie, J., Batterham, P., & Sanders, Y. (2005a). Heinemann biology 2 (4th ed.). Melbourne: Harcourt Education.Google Scholar
  13. Evans, B., Ladiges, P., McKenzie, J., & Sanders, Y. (2005b). Heinemann biology 1 (4th ed.). Melbourne: Harcourt Education.Google Scholar
  14. Falk, R. (2000). The gene—A concept in tension. In P. Beurton, R. Falk & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 317–348). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Fogle, T. (2000). The dissolution of protein coding genes in molecular biology. In P. Beurton, R. Falk & H. J. Rheinberger (Eds.), The concept of the gene in development and evolution: Historical and epistemological perspectives (pp. 3–25). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.CrossRefGoogle Scholar
  17. Gerstein, M. B., Bruce, B., Rozowsky, J. S., et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17, 669–681. doi: 10.1101/gr.6339607.CrossRefGoogle Scholar
  18. Giere, R. N. (1988). Explaining science. Chicago: The University of Chicago Press.Google Scholar
  19. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, part 1: horses for courses? International Journal of Science Education, 20(1), 83–97. doi: 10.1080/0950069980200106.CrossRefGoogle Scholar
  20. Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Franco, C. (2000). Science and education: Notions of reality, theory and model. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 343–362). Dordrecht: Kluwer Academic.Google Scholar
  21. Griffiths, P. E., & Neumann-Held, E. N. (1999). The many faces of the gene. Bioscience, 49, 656–662. doi: 10.2307/1313441.CrossRefGoogle Scholar
  22. Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science; conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822. doi: 10.1002/tea.3660280907.CrossRefGoogle Scholar
  23. Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (eds). (2005). Salters-Nuffield advanced biology AS. Oxford: Harcourt Educational Limited.Google Scholar
  24. Hall, A., Reiss, M., Rowell, C., Scott, A., Codrington, S., & Newton, N. (eds). (2006). Salters–Nuffield advanced biology A2. Oxford: Harcourt Educational Limited.Google Scholar
  25. Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer Academic.Google Scholar
  26. Henriksson, A. (2000). Biologi kurs A. Malmö: Gleerups Förlag.Google Scholar
  27. Henriksson, A. (2002a). Biologi kurs B. Malmö: Gleerups Förlag.Google Scholar
  28. Henriksson, A. (2002b). Kemi kurs B. Malmö: Gleerups Förlag.Google Scholar
  29. Johnsen, E. G. (1993). Textbooks in the Kaleidoscope; A critical survey of literature and research on educational texts. Oslo: Scandinavian University Press.Google Scholar
  30. Juhlin Svensson, A.-C. (2000). Nya redskap för lärande—Studier av lärares val och användning av läromedel i gymnasieskolan. Studies in Educational Sciences 23. Stockholm: HLS Förlag.Google Scholar
  31. Justi, R. S., & Gilbert, J. K. (2000). History and philosophy of science through models: some challenges in the case of “the atom”. International Journal of Science Education, 22(9), 993–1009. doi: 10.1080/095006900416875.CrossRefGoogle Scholar
  32. Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386. doi: 10.1080/0950069032000070324.CrossRefGoogle Scholar
  33. Karlsson, J., Krigsman, T., Molander, B.-O., & Wickman, P.-O. (2000). Biologi A med naturkunskap. Trelleborg: Liber AB.Google Scholar
  34. Karlsson, J., Molander, B.-O., & Wickman, P.-O. (2001). Biologi B. Trelleborg: Liber AB.Google Scholar
  35. Knain, E. (2001). Ideologies in school science textbooks. International Journal of Science Education, 23(3), 319–329. doi: 10.1080/095006901750066547.CrossRefGoogle Scholar
  36. Lambert, D. (1999). Exploring the use of textbooks in Key Stage 3 geography classrooms: a small-scale study. Curriculum Journal, 10(1), 85–105.Google Scholar
  37. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: a review of the research. Journal of Research in Science Teaching, 29(4), 331–359. doi: 10.1002/tea.3660290404.CrossRefGoogle Scholar
  38. Leonard, W. H., & Penick, J. E. (2003). Biology a community in context. New York: Glencoe McGraw-Hill.Google Scholar
  39. Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206. doi: 10.1080/0950069032000072782.CrossRefGoogle Scholar
  40. Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes?—Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.Google Scholar
  41. Ljunggren, L., Söderberg, B., & Åhlin, S. (2000). Liv i utveckling A: biologi gymnasieskolan. Örebro: Natur och Kultur.Google Scholar
  42. Ljunggren, L., Söderberg, B., & Åhlin, S. (2001). Liv i utveckling B: biologi gymnasieskolan. Örebro: Natur och Kultur.Google Scholar
  43. Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.Google Scholar
  44. Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer Academic.Google Scholar
  45. Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage.Google Scholar
  46. Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2000). Biologi A. Stockholm: Bonnier utbildning AB.Google Scholar
  47. Peinerud, I.-L., Lager-Nyqvist, L., & Lundegård, I. (2001). Biologi B. Stockholm: Bonnier utbildning AB.Google Scholar
  48. Pilström, H., Nordlund, S., Lüning, B., & Wahlström, E. (2001). Modell och verklighet B. Falköping: Natur och Kultur.Google Scholar
  49. Ritter, B., Adam-Carr, C., & Fraser, D. (2002). Nelson biology 11. Toronto: Nelson Thomson Learning.Google Scholar
  50. Shymansky, J. A., Yore, L. D., & Good, R. (1991). Elementary school teachers’ beliefs about and perceptions of elementary school science, science reading, science textbooks, and supportive instructional factors. Journal of Research in Science Teaching, 28, 437–454. doi: 10.1002/tea.3660280507.CrossRefGoogle Scholar
  51. The Swedish National Agency for Education. (2008a). Steering documents, Programme maual—Programme goal and structures, core subjects, subject index for upper secondary school. Retrieved November 12, 2008, available at: http://www.skolverket.se/sb/d/493/a/1306
  52. The Swedish National Agency for Education. (2008b). Steering documents, Goals for the subject of biology to aim for. Retrieved November 12, 2008, available at: http://www3.skolverket.se/ki03/front.aspx?sprak=EN&ar=0809&infotyp=8&skolform=21&id=BI&extraId=
  53. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. doi: 10.1080/09500690110066485.CrossRefGoogle Scholar
  54. Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153. doi: 10.1080/095006999290110.CrossRefGoogle Scholar
  55. Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055. doi: 10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E.CrossRefGoogle Scholar
  56. Wandersee, J. H. (2000). Using concept maps as a knowledge mapping tool. In K. M. Fisher, J. H. Wandersee & D. E. Moody (Eds.), Mapping biology knowledge (pp. 127–142). Dordrecht: Kluwer Academic.Google Scholar
  57. Wennberg, G. (1990). Geografi och skolgeografi; ett ämnes förändringar. Uppsala: Acta Universitatis Upsaliensis, Uppsala Studies in Education.Google Scholar
  58. Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28, 55–72. doi: 10.1002/tea.3660280106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Biology EducationKarlstad UniversityKarlstadSweden

Personalised recommendations