Research in Science Education

, 39:725 | Cite as

The Impact of a Web-Based Research Simulation in Bioinformatics on Students’ Understanding of Genetics

  • Hadas Gelbart
  • Gilat Brill
  • Anat Yarden


Providing learners with opportunities to engage in activities similar to those carried out by scientists was addressed in a web-based research simulation in genetics developed for high school biology students. The research simulation enables learners to apply their genetics knowledge while giving them an opportunity to participate in an authentic genetics study using bioinformatics tools. The main purpose of the study outlined here is to examine how learning using this research simulation influences students’ understanding of genetics, and how students’ approaches to learning using the simulation influence their learning outcomes. Using both quantitative and qualitative procedures, we were able to show that while learning using the simulation students expanded their understanding of the relationships between molecular mechanisms and phenotype, and refined their understanding of certain genetic concepts. Two types of learners, research-oriented and task-oriented, were identified on the basis of the differences in the ways they seized opportunities to recognize the research practices, which in turn influenced their learning outcomes. The research-oriented learners expanded their genetics knowledge more than the task-oriented learners. The learning approach taken by the research-oriented learners enabled them to recognize the epistemology that underlies authentic genetic research, while the task-oriented learners referred to the research simulation as a set of simple procedural tasks. Thus, task-oriented learners should be encouraged by their teachers to cope with the scientists’ steps, while learning genetics through the simulation in a class setting.


Genetics education Bioinformatics Authentic inquiry Computer-based simulation Scientific practices 



We thank the teachers and students who took part in this research and Mrs. Yetty Varon for the expert statistical analysis and enlightening remarks on earlier versions of this manuscript. AY is the incumbent of the Helena Rubinstein Career Development Chair.


  1. Abrams, E. (1997). Talking and doing science: important elements in a teaching-for-understanding approach. In J. D. Novak (Ed.), Teaching science for understanding: A human constructivist view (pp. 307–323). San Diego, CA: Academic.Google Scholar
  2. Afifi, A. A., & Azen, S. P. (1979). Statistical analysis: A computer oriented approach (2nd ed.). New York, NY: Academic.Google Scholar
  3. Atydia, Y. (2004). Genetics: The center for science teaching. The Hebrew University of Jerusalem, Jerusalem.Google Scholar
  4. Aznar, M. M., & Orcajo, T. I. (2005). Solving problems in genetics. International Journal of Science Education, 27(1), 101–121. doi: 10.1080/09500690410001673801.CrossRefGoogle Scholar
  5. Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33, 84–86.Google Scholar
  6. Banet, E., & Ayuso, E. (2000). Teaching genetics at secondary school: A strategy for teaching about the location of inheritance information. Science Education, 84, 313–351. doi: 10.1002/(SICI)1098-237X(200005)84:3<313::AID-SCE2>3.0.CO;2-N.CrossRefGoogle Scholar
  7. Brill, G., & Yarden, A. (2003). Learning biology through research papers: A stimulus for question-asking by high-school students. Cell Biology Education, 2(4), 266–274. doi: 10.1187/cbe.02-12-0062.CrossRefGoogle Scholar
  8. Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1962). A study of thinking. New York: Science Edition.Google Scholar
  9. Buckley, B. C., Gobert, J. D., Kindfield, A. C. H., Horwitz, P., Tinker, R. F., Gerlits, B., et al. (2004). Model-based teaching and learning with BioLogicaTM: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23–41. doi: 10.1023/B:JOST.0000019636.06814.e3.CrossRefGoogle Scholar
  10. Cartier, J. L., & Stewart, J. (2000). Teaching the nature of inquiry: Further developments in a high school genetics curriculum. Science and Education, 9, 247–267. doi: 10.1023/A:1008779126718.CrossRefGoogle Scholar
  11. Champagne, A. B. (1992). Cognitive research in thinking in academic science and mathematics: implications for practice and policy. In D. F. Halpern (Ed.), Enhancing thinking skills in the sciences and mathematics (pp. 117–133). Hillsdale, NJ: Erlbaum.Google Scholar
  12. Chinn, C. A., & Brewer, W. F. (2001). Models of data: a theory of how people evaluate data. Cognition and Instruction, 9(3), 323–393. doi: 10.1207/S1532690XCI1903_3.CrossRefGoogle Scholar
  13. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175–218. doi: 10.1002/sce.10001.CrossRefGoogle Scholar
  14. Collins, F. S., Green, E. D., Guttmacher, A. E., & Guyer, M. S. (2003). A vision for the future of genomics research. Nature, 422, 835–847. doi: 10.1038/nature01626.CrossRefGoogle Scholar
  15. Concord Consortium (2001). Biologica. Retrieved 10 October 2007 from
  16. de Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. Journal of the Learning Sciences, 11(1), 63–103. doi: 10.1207/S15327809JLS1101_3.CrossRefGoogle Scholar
  17. Drazen, J. M., & Weiss, S. T. (2002). Inherit the wheeze. Nature, 418(6896), 383–384. doi: 10.1038/418383a.CrossRefGoogle Scholar
  18. Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959. doi: 10.1002/tea.20186.CrossRefGoogle Scholar
  19. Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355–385. doi: 10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M.CrossRefGoogle Scholar
  20. Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3/4), 391–450. doi: 10.1207/s15327809jls0803&4_3.CrossRefGoogle Scholar
  21. Falk, H., Brill, G., & Yarden, A. (2008). Teaching a biotechnology curriculum based on adapted primary literature. International Journal of Science Education. doi: 10.1080/09500690701579553.
  22. Finkel, E. A. (1996). Making sense of genetics: Students’ knowledge use during problem solving in a high school genetics class. Journal of Research in Science Teaching, 33(4), 345–368. doi: 10.1002/(SICI)1098-2736(199604)33:4<345::AID-TEA1>3.0.CO;2-S.CrossRefGoogle Scholar
  23. Gelbart, H., & Yarden, A. (2001). Bioinformatics—Deciphering the secrets of the genome, Rehovot, Israel: The Amos de-Shalit Center for Science Teaching.
  24. Gelbart, H., & Yarden, A. (2006). Learning genetics through an authentic research simulation in bioinformatics. Journal of Biological Education, 40(3), 107–112.Google Scholar
  25. Hafner, R., & Stewart, J. (1995). Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the “context of discovery”. Science Education, 79(2), 111–146. doi: 10.1002/sce.3730790202.CrossRefGoogle Scholar
  26. Hershkowitz, R. (1987). The acquisition of concepts and misconceptions in basic geometry or when “a little learning is a dangerous thing”. Paper presented at the Proceedings of the Second International Seminar: Misconceptions and Educational Strategies in Science and Mathematics, Cornell University, Ithaca, NY.Google Scholar
  27. Hewson, P., & Lemberger, J. (2000). Status as the hallmark of conceptual learning. In J. Osborne (Ed.), Improving science education (pp. 110–125). Buckingham: Open University Press.Google Scholar
  28. Hickey, D. T., Kindfield, A. C. H., Horwitz, P., & Christie, M. A. T. (2003). Integrating curriculum, instruction, assessment, and evaluation in technology-supported genetics learning environment. American Educational Research Journal, 40(2), 495–538. doi: 10.3102/00028312040002495.CrossRefGoogle Scholar
  29. Jeong, H., & Chi, M. T. H. (2007). Knowledge convergence and collaborative learning. Instructional Science, 35, 287–315. doi: 10.1007/s11251-006-9008-z.CrossRefGoogle Scholar
  30. Jime’nez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84, 757–792. doi: 10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F.CrossRefGoogle Scholar
  31. Johnson, S. K., & Stewart, J. (1990). Using philosophy of science in curriculum development: An example from high school genetics. International Journal of Science Education, 12(3), 297–307. doi: 10.1080/0950069900120309.CrossRefGoogle Scholar
  32. Knippels, M. C. P. J., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108–112.Google Scholar
  33. Lee, H. S., & Songer, N. B. (2003). Making authentic science accessible to students. International Journal of Science Education, 25(8), 923–948. doi: 10.1080/09500690305023.CrossRefGoogle Scholar
  34. Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206. doi: 10.1080/0950069032000072782.CrossRefGoogle Scholar
  35. Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance—Do students see any relationship? International Journal of Science Education, 22(2), 177–195. doi: 10.1080/095006900289949.CrossRefGoogle Scholar
  36. Longden, B. (1982). Genetics—Are there inherent learning difficulties? Journal of Biological Education, 16(2), 135–140.Google Scholar
  37. Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetics phenomena. Journal of Biological Education, 34(4), 200–205.Google Scholar
  38. Mayr, E. (1997). This is biology: The science of the living world. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  39. Minstrell, J., & van Zee, E. H. (2000). Implication for teaching and learning inquiry: A summary. In E. H. van Zee (Ed.), Inquiring into inquiry learning and teaching in science. Washington DC: AAAS.Google Scholar
  40. National Center for Biotechnology Information [NCBI] (2004). A science primer. Available:
  41. National Center for Biotechnology Information [NCBI] (2005). BLAST. Available:
  42. Pinker, S. (2001). Talk of genetics and vice versa. Nature, 413(6855), 465–466. doi: 10.1038/35097173.CrossRefGoogle Scholar
  43. Samarapungavan, A., Westby, E. L., & Bonder, G. M. (2006). Contextual epistemic development in science: A comparison of chemistry students and research chemists. Science Education, 90, 468–495. doi: 10.1002/sce.20111.CrossRefGoogle Scholar
  44. Shkedi, A. (2005). Multiple case narrative: A qualitative approach to the study of multiple populations. Amsterdam: John Benjamins Publishing.Google Scholar
  45. Siegel, S., & Castellan, N. J. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McGraw-Hill.Google Scholar
  46. Stewart, J. (1988). Potential learning outcomes from solving genetics problems: A typology of problems. Science Education, 72(2), 237–254. doi: 10.1002/sce.3730720211.CrossRefGoogle Scholar
  47. Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. In J. D. Bransford (Ed.), How students learn: History, mathematics, and science in the classroom (pp. 515–565). Washington, DC: The National Academies Press.Google Scholar
  48. Stewart, J., & Hafner, R. (1994). The problem solving literature in the biology education. In D. Gable (Ed.), Handbook of research on science teaching and learning. Riverside NJ: MacMillan.Google Scholar
  49. Stewart, J., & Rudolph, L. (2001). Considering the nature of scientific problems when designing science curricula. Science Education, 85(3), 207–222. doi: 10.1002/sce.1006.CrossRefGoogle Scholar
  50. Tsui, C.-Y., & Treagust, D. F. (2004). Motivational aspects of learning genetics with interactive multimedia. The American Biology Teacher, 66(4), 277–285. doi: 10.1662/0002-7685(2004)066[0277:MAOLGW]2.0.CO;2.CrossRefGoogle Scholar
  51. Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44(2), 205–235. doi: 10.1002/tea.20116.CrossRefGoogle Scholar
  52. Vahava, O., Morell, R., Lynch, E. D., Weiss, S., Kagan, M. E., Ahituv, N., et al. (1998). Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science, 279, 1950–1954. doi: 10.1126/science.279.5358.1950.CrossRefGoogle Scholar
  53. Vance, R. E. (1996). Heroic antireductionism and genetics: A tale of one science. Philosophy of Science, 63, 36–45. doi: 10.1086/289934.CrossRefGoogle Scholar
  54. Weigold, M. F., & Triese, D. (2004). Attracting teen surfers to science web sites. Public Understanding of Science (Bristol, England), 13(3), 229–248. doi: 10.1177/0963662504045504.Google Scholar
  55. Wynne, C. F., Stewart, J., & Passmore, C. (2001). High school students’ use of meiosis when solving genetics problems. International Journal of Science Education, 23(5), 501–515. doi: 10.1080/095006901750162856.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Science TeachingWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations