Advertisement

Research in Science Education

, Volume 38, Issue 5, pp 545–564 | Cite as

Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering

  • Frederik V. ChristiansenEmail author
  • Camilla Rump
Article

Abstract

Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical engineering and mechanical engineering. Based on a generalization of Kuhn’s theory of disciplinary matrix, and the idea of boundary objects we analyse how basic thermodynamics theory is conceived in the different scientific specialties. The study is based on interviews with teachers and analysis of the different textbook traditions. It is concluded that teachers need to take into account how subject matter is conceived in other related scientific specialties when designing courses. Two examples demonstrating how this may be done are given.

Keywords

Thermodynamics Physical chemistry Engineering thermodynamics Disciplinary matrix Problem of transfer 

References

  1. Atkins, P. W. (1994). Physical chemistry (4th ed.). Oxford, UK: Oxford University Press.Google Scholar
  2. Baierlein, R. (1999). Thermal physics. Cambridge, UK: Press Syndicate of the University of Cambridge.Google Scholar
  3. Biggs, J. (1999). Teaching for quality learning at university. Buckingham, UK: Society for Reaserch into Higher Education.Google Scholar
  4. Both, E., & Christiansen, G. (2002). Termodynamik (4th ed.). Lyngby, Denmark: Den private Ingeniørfond.Google Scholar
  5. Bucciarelli, L. L. (1996). Designing engineers. Cambridge, MA: The MIT Press.Google Scholar
  6. Bucciarelli, L. L. (2003). Designing and learning: A disjunction in contexts. Design Studies, 24(3), 295–311.CrossRefGoogle Scholar
  7. Callen, H. B. (1985). Thermodynamics and an introduction to thermostatistics (2nd ed.). New York, NY: Wiley (Revised edition of: Thermodynamics, 1960).Google Scholar
  8. Chevellard, Y. (1985). La transposition didactique. Du savoir savant au savoir enseigné (The didactical transposition. From scientific knowledge to taught knowledge). Grenoble, France: La Pensée Sauvage.Google Scholar
  9. Feynman, R. (1967). The character of physical law. Cambridge, MA: The MIT Press.Google Scholar
  10. Guggenheim, E. A. (1967). Thermodynamics – an advanced treatment for chemists and physicists (5th revised ed.). Amsterdam, The Netherlands: North-Holland. (First edition 1949).Google Scholar
  11. Hendricks, V., Jakobsen, A., & Pedersen, S. (2000). Identification of matrices in science and engineering. Journal for General Philosophy of Science, 31, 277–305.CrossRefGoogle Scholar
  12. Jones, J. B., & Dugan, R. E. (1996). Engineering thermodynamics. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  13. Keenan, J. H. (1941). Thermodynamics. New York: Wiley.Google Scholar
  14. Knorr Cetina, K. (1999). Epistemic cultures. Cambridge, MA: Harvard University Press.Google Scholar
  15. Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago.Google Scholar
  16. Laidler, K., Meiser, J. H., & Sanctuary, B. C. (2003). Physical chemistry (4th ed.). Boston: Houghton Mifflin.Google Scholar
  17. Latour, B. (1988). Science in action. Cambridge, MA: Harvard University Press.Google Scholar
  18. Levine, I. N. (1995). Physical chemistry. New York: McGraw-Hill.Google Scholar
  19. Loverude, M. E., Kautz, C. H., & Heron, P. R. L. (2002). Student understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas. American Journal of Physics, 70(2), 137–148.CrossRefGoogle Scholar
  20. McDermott, L. C., & Redish, E. F. (1999). Resource letter: Per–1: Physics education research. American Journal of Physics, 67, 755–767.CrossRefGoogle Scholar
  21. Mooney, D. A. (1953). Mechanical engineering thermodynamics. New York: Prentice-Hall.Google Scholar
  22. Moore, W. J. (1972). Physical chemistry (5th ed.). London: Longman House. (First edition published 1950).Google Scholar
  23. Moran, M. J., & Shapiro, H. N. (1998). Fundamentals of engineering thermodynamics (3rd ed.). London: Wiley.Google Scholar
  24. Ohanian, H. C. (1985). Physics (2nd expanded ed.). New York, NY: W. W. Norton.Google Scholar
  25. Prosser, M., & Trigwell, K. (1999). Understanding learning and teaching. The experience in higher education. Buckingham, UK: Society for Reaserch into Higher Education.Google Scholar
  26. Reynolds, W. C. (1968). Thermodynamics (2nd ed.). New York: McGraw-Hill.Google Scholar
  27. Reynolds, W. C., & Perkins, H. C. (1977). Engineering thermodynamics (2nd ed.). New York: McGraw-Hill Science/Engineering/Math.Google Scholar
  28. Royer, J. M., Mestre, J. P., & Defresne, R. J. (2005). Introduction: Framing the transfer problem. In J. P. Mestre (Ed.), Transfer of leaning from a modern multidisciplinary perspective (pp. vii–xxvi). Greenwich, CT: Information Age Publishing.Google Scholar
  29. Rump, C., Jakobsen, A., & Clemmensen, T. (1998). Improving conceptual understanding and using qualitative tests. In C. Rust (Ed.), 6 improving student learning outcomes (pp. 298–308). Oxford, UK: Oxford Centre for Staff & Learning Development.Google Scholar
  30. Shapiro, A. H. (1953). The dynamics and thermodynamics of compressible fluid flow (Vol. 1). New York: Ronald Press.Google Scholar
  31. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–37. Social Studies of Science, 19(3), 387–420 (August).CrossRefGoogle Scholar
  32. Vincenti, W. (1990). What engineers know and how they know it. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  33. Young, H. D., & Freedman, R. A. (2003). Sears and Zemansky’s university physics with modern physics (11th ed.). San Francisco, CA (First edition by Sears and Zemansky, 1949).Google Scholar
  34. Zemansky, M. W. (1957). Heat and thermodynamics – an intermediate textbook for students of physics, chemistry and engineering (4th ed.). New York: McGraw-Hill (First edition 1937).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department for Medicinal Chemistry, Faculty of the Pharmaceutical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department for Science EducationUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations