Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Substituent effects on novel diaminovinylidenes by DFT

  • 9 Accesses

Abstract

Electronic and steric effects on singlet and triplet symmetric 2,4-diX-vinylidenes with acyclic, cyclic-saturated, and cyclic-unsaturated structures are compared and contrasted with their corresponding asymmetric 2,5-diX-vinylidenes, at B3LYP/6-311++G** level of theory (X = H, Me, i-Pr, t-Bu, NH2, OH, OMe, SH, Ph, CN, and CF3). From 64 novel vinylidenes scrutinized, 45 are singlet while the other 19 show triplet ground state. These are suggested by the conductor like polarizable continuum model on both gas-phase and solvent-phase optimized structures. Regardless of X, band gap decreases in going from acyclic to cyclic-saturated and cyclic-unsaturated structures. More importantly nucleophilicity decreases with the same trend for symmetric carbenes. The proton affinity decreases in going from acyclic to cyclic-unsaturated and to cyclic-saturated structures for both symmetric and asymmetric carbenes. Atoms in molecules wavefunction analysis show internal hydrogen bondings for 1s-Me, 1s-i-Pr, 1s-t-Bu, 1s-Ph, 1′s-CF3, 2s-OH, 2′s-t-Bu, and 2′s-OMe.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    P.J. Stang, Chem. Rev. 78, 383 (1978)

  2. 2.

    W. Kirmse, Carbene Chemistry, 2nd edn. (Academic, New York, 1971)

  3. 3.

    R.A. Moss, Carbenes, vol. I/II (Wiley, New York, 1975)

  4. 4.

    C. Wentrup, Reactive Molecules (Wiley, New York, 1984)

  5. 5.

    M.P. Doyle, D.C. Forbes, Chem. Rev. 98, 911 (1998)

  6. 6.

    R.S. Grainger, K.R. Munro, Tetrahedron 71, 7795 (2015)

  7. 7.

    M.D. Su, C.C. Chuang, Theor. Chem. Acc. 132, 1360 (2013)

  8. 8.

    W.P. Leung, Y.C. Chan, C.W. So, Organometallics 3411, 2067 (2015)

  9. 9.

    C. McKay, in Carbenes, vol. 2, ed. by R.A. Moss, M. Jones Jr. (Wiley-Interscience, New York, 1975)

  10. 10.

    A.L. Sobolewski, W. Domcke, J. Phys. Chem. A 106, 4158 (2002)

  11. 11.

    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

  12. 12.

    P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

  13. 13.

    L.R. Domingo, E. Chamorro, P. Perez, J. Org. Chem. 73, 4615 (2008)

  14. 14.

    R.G. Pearson, J. Org. Chem. 54, 1423 (1989)

  15. 15.

    R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

  16. 16.

    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

  17. 17.

    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  18. 18.

    C. Barrientos-Salcedo, B. Espinoza, C. Soriano-Correa, J. Mol. Struct. 1173, 92 (2018)

  19. 19.

    P. George, M. Trachtman, C.W. Bock, A.M. Brett, J. Chem. Soc. Perkin Trans. 2, 1222 (1976)

  20. 20.

    H. Szatylowicz, A. Jezuita, K. Ejsmont, T.M. Krygowski, J. Phys. Chem. A 121, 5196 (2017)

  21. 21.

    O. Exner, S. Bohm, Curr. Org. Chem. 10, 763 (2006)

  22. 22.

    L. Campos-Fernadez, New J. Chem. 43, 11125 (2019)

  23. 23.

    C. Soriano-Correa, J. Mol, Graph. Model. 81, 116 (2018)

  24. 24.

    R. Tonner, G. Heydenrych, G. Frenking, Chem. Phys. Chem. 9, 1474 (2008)

  25. 25.

    N. Khorshidvand, M.Z. Kassaee, J. Phys. Org. Chem. 32, 3996 (2019)

  26. 26.

    M.Z. Kassaee, N. Khorshidvand, A.A. Ahmadi, P.T. Cummings, J. Phys. Org. Chem. 32, 3898 (2019)

  27. 27.

    A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736 (1985)

  28. 28.

    A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

  29. 29.

    A.E. Reed, L.A. Curtis, F. Weinhold, Chem. Rev. 88, 899 (1988)

  30. 30.

    E. Scrocco, J. Tomasi, J. Comput. Chem. 42, 95 (1973)

  31. 31.

    P. Popelier, P.L.A. Popelier, Atoms in Molecules: An Introduction (Prentice Hall, Upper Saddle River, 2000)

  32. 32.

    R.F.W. Bader, Chem. Rev. 91, 893 (1991)

  33. 33.

    F.B. Konig, J. Schonbohm, Chemical Advice by R.F.W. Bader, McMaster University, Hamilton, Canada, AIM2000, Version 2.0, Copyright (2002)

  34. 34.

    M. Schmidt am Busch, E.W. Knapp, Chem. Phys. Chem. 5, 1513 (2004)

  35. 35.

    V. Barone, M. Cossi, N. Rega, G. Scalmani, J. Comput. Chem. 24, 669 (2003)

  36. 36.

    B. Mennucci, J. Phys. Chem. Lett. 1, 1666 (2010)

  37. 37.

    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

  38. 38.

    D.J. Nelson, S.P. Nolan, Chem. Soc. Rev. 42, 6723 (2013)

  39. 39.

    C.A. Tolman, Chem. Rev. 77, 313 (1977)

  40. 40.

    S. Seshadri, Int. J. S. Res. Sci. Eng. Tech. 4, 190 (2018)

  41. 41.

    D. Munz, Organometallics 37, 275 (2018)

  42. 42.

    L. Falivene, L. Cavallo, Coord. Chem. Rev. 344, 101 (2017)

Download references

Acknowledgements

This research was supported by Tarbiat Modares University (TMU). Helpful suggestions and cooperation are appreciated from Kaveh Rockyzadeh and Kianoosh Rockyzadeh.

Author information

Correspondence to Mohamad Zaman Kassaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10030 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khorshidvand, N., Kassaee, M.Z. & Safaei, S. Substituent effects on novel diaminovinylidenes by DFT. Res Chem Intermed (2020). https://doi.org/10.1007/s11164-020-04092-0

Download citation

Keywords

  • DFT
  • Diaminovinylidene
  • Electronic effects
  • AIM
  • pKa
  • Proton affinity