Advertisement

Structures and electronic and magnetic properties of the 3d transition metal-substituted TMC5N8 clusters

  • Zhi LiEmail author
  • Zhen Zhao
  • Zhong-suo Liu
  • Hong-bin Wang
  • Qi Wang
Article
  • 13 Downloads

Abstract

The structures and electronic and spin properties of the 3d TMC5N8 clusters have been calculated using the PBE functional. The results demonstrate that the Zn atom substituting significantly distorts the C6N8 clusters. TM atoms prefer to substitute the C atom which is farthest away from the biasing N atom. The TM substituting dramatically reduces the structural stability of the C6N8 clusters except for ScC5N8, TiC5N8 and VC5N8. As for the ground-state TMC5N8 clusters, the TM substituting improves the kinetic stability of the C6N8 clusters except for Ti, Cr and Cu. TM atoms in the TMC5N8 clusters loss certain amount of electrons. A few 4s orbital electrons of TM atoms transferred to the N atoms in the TMC5N8 clusters. The maximum spin values of the TM atoms occur at Mn and Ni for the TMC5N8 clusters.

Keywords

C3N4 clusters Density functional theory Electronic properties Magnetic properties 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the Key Fund Project of the National Science Foundation, People’s Republic of China (Grant No. 51634004), the National Natural Science Foundation, People’s Republic of China (Grant Nos. 51704149 and 51874172), the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20180551213), Key Laboratory of Chemical Metallurgy Engineering Liaoning Province, University of Science and Technology LiaoNing (Grant No. USTLKFSY201711) and the Fund Project of University of Science and Technology Liaoning (Grant No. 2017YY02).

References

  1. 1.
    J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, ChemCatChem. 9, 1708 (2017)CrossRefGoogle Scholar
  2. 2.
    Z.T. Wang, J.L. Xu, H. Zhou, X. Zhang, Rare Metal 38, 459 (2019)CrossRefGoogle Scholar
  3. 3.
    C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou, L. Dong, L. Qi, Appl. Catal. B Environ. 235, 66 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Zhang, S. Niu, X. Zhang, Z. Jiang, J. Zheng, C. Guo, Appl. Surf. Sci. 489, 427 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, Y. Wang, Y. Chen, C. Yin, Y. Zuo, L.-F. Cui, Mater. Lett. 139, 70 (2015)CrossRefGoogle Scholar
  6. 6.
    G.D. Ding, W.T. Wang, T. Jiang, B.X. Han, H.L. Fan, G.Y. Yang, Chemcatchem. 5, 192 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, Q. Zhang, Q. Shi, Z. Cai, Z. Yang, Sep. Purif. Technol. 142, 251 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Ding, X. Chen, M. Antonietti, X. Wang, Chemsuschem 4, 274 (2011)PubMedGoogle Scholar
  9. 9.
    Z. Li, C. Kong, G. Lu, J. Phys. Chem. C. 120, 56 (2016)CrossRefGoogle Scholar
  10. 10.
    P.F. Zhang, Y.T. Gong, H.R. Li, Z.R. Chen, Y. Wang, RSC Adv. 3, 5121 (2013)CrossRefGoogle Scholar
  11. 11.
    Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Appl. Catal. B Environ. 205, 173 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Ma, Q. Yang, Y. Wen, W. Liu, Appl. Catal. B: Environ. 201, 232 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 131, 11658 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    S. Tonda, S. Kumar, S. Kandula, V. Shanker, J. Mater. Chem. A. 2, 6772 (2014)CrossRefGoogle Scholar
  15. 15.
    W. Oh, V.W.C. Chang, Z. Hu, R. Goei, T. Lim, Chem. Eng. J. 323, 260 (2017)CrossRefGoogle Scholar
  16. 16.
    X.C. Wang, X.F. Chen, A. Thomas, X.Z. Fu, M. Antonietti, Adv. Mater. 21, 1609 (2009)CrossRefGoogle Scholar
  17. 17.
    H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson, R.R. Resende, E. Lorencon, Mol. Catal. 435, 156 (2017)CrossRefGoogle Scholar
  18. 18.
    Q. Liu, J.Y. Zhang, Langmuir 29, 3821 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    B. Sun, H. Li, H. Yu, D. Qian, M. Chen, Carbon 117, 1 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Deng, M. Zhu, RSC Adv. 6, 25670 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Kong, Y. Dong, P. Jiang, G. Wang, H. Zhang, N. Zhao, J. Mater. Chem. A. 4, 9998 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Tahir, M. Tahir, N.A.S. Amin, Appl. Surf. Sci. 419, 875 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Ji, J. Huang, K. Zhang, D. He, S. Chang, D. Luo, E. Zhang, M. Xu, J. Liu, J. Zhang, J. Xu, J. Wang, C. Zhu, Inorg. Chem. Front. 5, 2420 (2018)CrossRefGoogle Scholar
  24. 24.
    B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Sci. Technol. Adv. Mater. 12, 034401 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    H. Sudrajat, S. Hartuti, Optik. 181, 1057 (2019)CrossRefGoogle Scholar
  26. 26.
    D. Ghosh, G. Periyasamy, B. Pandey, S.K. Pati, J. Mater. Chem. 2, 7943 (2014)Google Scholar
  27. 27.
    S. Sarkar, S.S. Sumukh, K. Roy, N. Kamboj, T. Purkait, M. Das, R. Sundar Dey, J. Colloid Interf. Sci. 558, 182 (2019)CrossRefGoogle Scholar
  28. 28.
    E. Kroke, Angew. Chem. Int. Edit. 53, 11134 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, J. Phys. Chem. C. 116, 23485 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Wu, G. Cao, F. Tang, M. Huang, Comp. Mater. Sci. 86, 180 (2014)CrossRefGoogle Scholar
  31. 31.
    T. Wang, G. Yu, J. Liu, X. Huang, W. Chen, Phys. Chem. Chem. Phys. 21, 1773 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Y. Yang, C. Yin, K. Li, H. Tang, Y. Wang, Z. Wu, J. Electrochem. Soc. 166, F755 (2019)CrossRefGoogle Scholar
  33. 33.
    S.A. Khandy, D.C. Gupta, RSC Adv. 6, 48009 (2016)CrossRefGoogle Scholar
  34. 34.
    Z. Zhao, Z. Li, Q. Wang, T. Shi, Mater. Chem. Phys. 240, 122220 (2020)CrossRefGoogle Scholar
  35. 35.
    Z. Zhao, Z. Li, Mod. Phys. Lett. B. 33, 1950459 (2019)CrossRefGoogle Scholar
  36. 36.
    Z. Zhao, Z. Li, Q. Wang, Chem. Phys. Lett. (2020)Google Scholar
  37. 37.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)CrossRefGoogle Scholar
  38. 38.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Z. Zhu, X. Tang, T. Wang, W. Fan, Z. Liu, C. Li, P. Huo, Y. Yan, Appl. Catal. B Environ. 241, 319 (2018)CrossRefGoogle Scholar
  40. 40.
    J. Cui, S. Liang, X. Wang, J. Zhang, J. Mater. Chem. Phys. 161, 194 (2015)CrossRefGoogle Scholar
  41. 41.
    P. Niu, L. Zhang, G. Liu, Adv. Funct. Mater. 22, 4763 (2012)CrossRefGoogle Scholar
  42. 42.
    D. Jose, A. Datta, J. Chem. Phys. C. 116, 24639 (2012)CrossRefGoogle Scholar
  43. 43.
    B. Saha, A. Datta, J. Phys. Chem. C. 122, 19204 (2018)CrossRefGoogle Scholar
  44. 44.
    T. Teshome, A. Datta, Acs Appl. Mater. Inter. 9, 34213 (2017)CrossRefGoogle Scholar
  45. 45.
    Z.-W. Xiong, L.-H. Cao, J. Alloy. Compd. 775, 100 (2019)CrossRefGoogle Scholar
  46. 46.
    S.M. Pratik, C. Chowdhury, R. Bhattacharjee, S. Jahiruddin, A. Datta, Chem. Phys. 460, 101 (2015)CrossRefGoogle Scholar
  47. 47.
    J.M. Recio, R. Pandey, A. Ayuela, A.B. Kunz, J. Chem. Phys. 98, 4783 (1993)CrossRefGoogle Scholar
  48. 48.
    G. Ge, Q. Jing, Z. Yang, Y. Luo, Chin. Phys. Lett. 26, 083101 (2009)CrossRefGoogle Scholar
  49. 49.
    L.J. Shi, Phys. Lett. A. 374, 1292 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  2. 2.School of Chemistry and Life ScienceAnshan Normal UniversityAnshanPeople’s Republic of China

Personalised recommendations