Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Functionalization of sheet structure Co–Mo–S with Ni(OH)2 for efficient photocatalytic hydrogen evolution

  • 20 Accesses

Abstract

In this paper, the new composite material Co–Mo–S/Ni(OH)2 has high hydrogen evolution ability under photoreaction, the hydrogen evolution of Co–Mo–S/Ni(OH)2 composite material reaches 357 μmol after reaction 3 h, and the catalyst still exhibits high photocatalytic activity after four cycles under light response. It shows that this new catalyst has high activity and stability. The results of XPS, TEM, SEM and XRD indicate that the composite catalyst is successfully synthesized. The results of PL and electrochemical experiments show that Ni(OH)2 attached to Co–Mo–S can increase the transfer of photogenerated electrons and reduce the recombination of electrons and holes. From the UV–visible and BET characterization, the presence of Ni(OH)2 increases the range of response of the Co–Mo–S to sunlight, the pore volume and surface range, which improves the absorption capacity of the catalyst for ErB. Therefore, Co–Mo–S/Ni(OH)2 has excellent application prospect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    C. Hall, P. Tharakan, J. Hallock et al., Nature (London) 426(6964), 318 (2003)

  2. 2.

    L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells 1(1), 5 (2015)

  3. 3.

    X. Chen, S. Shen, L. Guo et al., Chem. Rev. 110(11), 6503 (2010)

  4. 4.

    J. Xu, F. Huo, Y. Zhao et al., Int. J. Hydrog. Energy 43(18), 8674 (2018)

  5. 5.

    H. Yu, J. Xu, H. Guo et al., RSC Adv. 7(89), 56417 (2017)

  6. 6.

    H. Yu, J. Xu, Z. Liu et al., J. Mater. Sci. 53(21), 15271 (2018)

  7. 7.

    H.M. Jeong, J.H. Kim, S.Y. Jeong et al., ACS Appl. Mater. Interfaces 8(12), 7877 (2016)

  8. 8.

    A. Mukherji, B. Seger, Q.L. Gao et al., ACS Nano 5(5), 3483 (2011)

  9. 9.

    S. Kim, S. Hwang, W. Choi, J. Phys. Chem. B 109(51), 24260 (2005)

  10. 10.

    E. Borgarello, N. Serpone, E. Pelizzetti et al., J. Photochem. 33(1), 35 (1986)

  11. 11.

    E. Yoshioka, S. Kohtani, E. Tanaka et al., Tetrahedron 71(5), 773 (2015)

  12. 12.

    T. Sreethawong, S. Yoshikawa, Int. J. Hydrog. Energy 31(6), 786 (2006)

  13. 13.

    Y.J. Yuan, D.Q. Chen, Y.W. Huang et al., Chemsuschem 9(9), 1003 (2016)

  14. 14.

    N. Bao, L. Shen, T. Takata et al., Cheminform 39(20), 110 (2008)

  15. 15.

    J. Li, Y. Yin, E. Liu et al., J. Hazard. Mater. 321, 183 (2017)

  16. 16.

    L. Chacko, A.K. Swetha, R. Anjana et al., Mater. Res. Express 3(11), 116102 (2016)

  17. 17.

    X. Shao, K. Wang, R. Pang et al., J. Phys. Chem. C 119(46), 10334 (2015)

  18. 18.

    X. Yang, H. Huang et al., Mater. Res. Bull. 76, 79 (2016)

  19. 19.

    H. Zhang, Y. Li, T. Xu et al., J. Mater. Chem. A 3(29), 15020 (2015)

  20. 20.

    X. Zong, G. Wu, H. Yan et al., J. Phys. Chem. C 114(4), 1963 (2010)

  21. 21.

    M. Sabarinathan, S. Harish, J. Archana et al., RSC Adv. 7(40), 24754 (2017)

  22. 22.

    C. Hao, F. Wen, J. Xiang et al., Adv. Funct. Mater. 24(42), 6700 (2015)

  23. 23.

    J. Li, X.J. Li, Adv. Mater. Res. 805–806(6), 1291 (2013)

  24. 24.

    Y. Huan, Z. Wu, J. Zhang et al., J. Phys. Chem. C 115(11), 4953 (2011)

  25. 25.

    R. Kostecki, F. Mclarnon, T. Richardson, J. Electrochem. Soc. 145(7), 2380 (1998)

  26. 26.

    S. Leong, D. Li, K. Hapgood et al., Appl. Catal. B 198(5), 224 (2016)

  27. 27.

    S. Min, G. Lu, Int. J. Hydrog. Energy 37(14), 10564 (2012)

  28. 28.

    S.K. Choi, H.S. Yang, J.H. Kim et al., Appl. Catal. B 121–122(25), 206 (2012)

  29. 29.

    F. Liu, S. Ji, Acta Phys. Chim. Sin. 23(12), 1899 (2007)

  30. 30.

    Y.F. Chen, L.L. Tan, J.M. Liu et al., Appl. Catal. B Environ. 206(Complete), 426 (2017)

  31. 31.

    W.P. Han, J.W. Wang et al., Catal. Commun. 124, 86 (2019)

  32. 32.

    Z.W. Zhang, Q.H. Li, X.Q. Qiao et al., Chin. J. Catal. 40(3), 371 (2019)

  33. 33.

    J. Hu, Y. Cao, J. Xie et al., Ceram. Int. 43(14), 11109 (2017)

  34. 34.

    C. Kong, S. Min, G. Lu, Int. J. Hydrog. Energy 39(10), 4836 (2014)

  35. 35.

    S. Gayatri, S. Sabiha et al., Inorg. Chem. 57(16), 10059 (2018)

  36. 36.

    N. Susanginee, S. Gayatri et al., ACS Appl. Mater. Interfaces 11, 20923 (2019)

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Ningxia Province (NZ17262). Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36). New Catalytic Process in Clean Energy Production (ZDZX201803).

Author information

JX and HY conceived and completed the experiment, Min Mao helped to run the experiment and wrote the article.

Correspondence to Jing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Mao, M. & Yu, H. Functionalization of sheet structure Co–Mo–S with Ni(OH)2 for efficient photocatalytic hydrogen evolution. Res Chem Intermed 46, 1823–1840 (2020). https://doi.org/10.1007/s11164-019-04065-y

Download citation

Keywords

  • Co–Mo–S
  • Ni(OH)2
  • Hydrogen evolution
  • Photocatalyst