Advertisement

Promoting effect of multi-transition metals on the NO reduction by NH3 over TiO2 catalyst studied with in situ DRIFTS

  • Xincheng Wang
  • Xiangjun Zhang
  • Minyao He
  • Yongji Song
  • Cuiqing Li
  • Hong WangEmail author
Article
  • 17 Downloads

Abstract

NOx is one of the most detrimental pollutants to the atmospheric and ecological environment. Currently, selective catalytic reduction (SCR) of NOx by NH3 was conducted by transition metals-doped (Mo, Ce, Cu, Fe, W, and Zr, including P) TiO2 catalysts through orthogonal experimental design. It was found that Mo, Cu, Fe, and Zr significantly affected the catalytic activity, while Mo showed the highest impact. The optimum amounts of Mo, Ce, Cu, Fe, W, P, and Zr were 1.5 wt%, 2 wt%, 6 wt%, 4 wt%, 0 wt%, 0.9 wt%, and 4 wt%, respectively. The catalysts’ redox properties and adsorption capacity for NO were key factors affecting the catalytic activity. Proper amounts of adsorbed oxygen, together with appropriate adsorption capacity for NO and acidity distribution, were beneficial for the formation of intermediates. The mechanistic cause of the promoting effect of metal oxides for NH3-SCR was studied using in situ DRIFTS. These results revealed that the addition of metal oxides is to promote the adsorption and activation of NH3 on the catalyst surface, which is beneficial for the promotion of SCR activity.

Graphic abstract

Promoting effect of multi-transition metals was confirmed for the selective catalytic reduction of NO by NH3 over TiO2 following the order of Mo > Fe ≈ Zr > Cu > W>P > Ce.

Keywords

Transition metals NO reduction In situ DRIFTS 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (U1662103, 21673290, and 21908009), Beijing Natural Science Foundation (2184101), and Beijing Science and Technology Planning Project (KM201810017001).

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.

Supplementary material

11164_2019_4055_MOESM1_ESM.docx (132 kb)
Supplementary material 1 (DOCX 131 kb)

References

  1. 1.
    Y. Zhao, R. Hao, P. Zhang, S. Zhou, Energy Fuels 28, 6502 (2014)CrossRefGoogle Scholar
  2. 2.
    G. Gao, J.W. Shi, C. Liu, C. Gao, Z. Fan, C. Niu, Appl. Surf. Sci. 411, 338 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Granger, V.I. Parvulescu, Chem. Rev. 111, 3155 (2011)CrossRefGoogle Scholar
  4. 4.
    C.A. Sierra-Pereira, E.A. Urquieta-González, Fuel 118, 137 (2014)CrossRefGoogle Scholar
  5. 5.
    S.X. Zhuang, M. Yamazaki, K. Omata, Y. Takahashi, M. Yamada, Appl. Catal. B 31, 133 (2001)CrossRefGoogle Scholar
  6. 6.
    A.Y. Stakheev, A.I. Mytareva, D.A. Bokarev, G.N. Baeva, D.S. Krivoruchenko, A.L. Kustov, M. Grill, J.R. Thøgersen, Catal. Today 258, 183 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Salazara, S. Hoffmannb, L. Tillmann, V. Singer, R. Becker, W. Grünert, Appl. Catal., B 218, 793 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Iwasaki, K. Yamazaki, K. Banno, H. Shinjoh, J. Catal. 260, 205 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Salazar, R. Becker, W. Grünert, Appl. Catal. B 165, 316 (2015)CrossRefGoogle Scholar
  10. 10.
    J.K. Lai, I.E. Wachs, ACS Catal. 8, 6537 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Huang, W. Shan, S. Yang, J. Zhang. Catal. Sci. Technol. 4, 3611 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18, 1 (1998)CrossRefGoogle Scholar
  13. 13.
    Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Appl. Catal. B 179, 380 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Zhu, F. Gao, L. Dong, W. Yu, L. Qi, Z. Wang, L. Dong, Y. Chen, Appl. Catal. B 95, 144 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Jabłońska, R. Palkovits, Appl. Catal. B 181, 332 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Li, H. Xu, X. Feng, S. Liu, Y. Chen, Can. J. Chem. Eng. 96, 1168 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Cheng, W. Song, Y. Cheng, H. Zheng, L. Wang, J. Liu, Z. Zhao, Y. Wei, RSC Adv. 8, 19301 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Liu, S. Zhang, J. Li, L. Ma, Appl. Catal. B 144, 90 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Liu, M. Sun, Q. Lin, H. Xu, J. Wang, Y. Chen, Can. J. Chem. Eng. 97, 1274 (2018).CrossRefGoogle Scholar
  20. 20.
    Q. Zhang, J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang, K. Long, Appl. Surf. Sci. 435, 1037 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Si, D. Weng, X. Wu, R. Ran, Z. Ma, Catal. Commun. 17, 146 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Yu, Z. Si, L. Chen, X. Wu, D. Weng, Appl. Catal. B 163, 223 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Chen, R. Xu, R. Zhang, N. Liu, Environ. Sci. Technol. 48, 13909 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Gao, X. Li, H. Hu, G. Li, H. Liu, Y. Yu, Electrochim. Acta 120, 231 (2014)CrossRefGoogle Scholar
  25. 25.
    F. He, J. Li, T. Li, G. Li, Chem. Eng. J. 237, 312 (2014)CrossRefGoogle Scholar
  26. 26.
    C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Logar, B. Jančar, S. Šturm, D. Suvorov, Langmuir 26, 12215 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Adamski, Z. Sojka, Catal. Today 137, 283 (2008)CrossRefGoogle Scholar
  29. 29.
    M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B 27, 145 (2000)CrossRefGoogle Scholar
  30. 30.
    L. Liang, S. Hu, S. Pan, T. Shang, C. Liu, D. Wang, Fuel 120, 38 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Qi, R.T. Yang, R. Chang, Appl. Catal. B 51, 93 (2004)CrossRefGoogle Scholar
  32. 32.
    Y. Jiang, Z. Xing, X. Wang, S. Huang, X. Wang, Q. Liu, Fuel 151, 124 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal. 187, 419 (1999)CrossRefGoogle Scholar
  34. 34.
    H. Zhu, J.H. Kwak, C.H.F. Peden, J. Szanyi. Catal. Today 205, 16 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Wang, L. Zhang, K. Kamasamudram, W.S. Epling, ACS Catal. 3, 871 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Rivallan, G. Ricchiardi, S. Bordiga, A. Zecchina, J. Catal. 264, 104 (2009)CrossRefGoogle Scholar
  37. 37.
    Q. Li, H. Gu, P. Li, Y. Zhou, Y. Liu, Z. Qi, Y. Xin, Z. Zhang, Chin. J. Catal. 35, 1289 (2014)CrossRefGoogle Scholar
  38. 38.
    X. Yao, L. Zhang, L. Li, L. Liu, Y. Cao, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L. Dong, Y. Chen, Appl. Catal. B 150–151, 315 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. Yu, J. Chen, J. Wang, Y. Chen, Chin. J. Catal. 37, 281 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Anstrom, N.Y. Topsoe, J.A. Dumesic, J. Catal. 213, 115 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.College of Chemical EngineeringBeijing Institute of Petrochemical TechnologyBeijingChina
  2. 2.Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction TechnologyBeijingChina
  3. 3.Sinopec Jinan CompanyJinanChina

Personalised recommendations