Advertisement

One-pot synthesis of 2-amino-3-cyanopyridines and hexahydroquinolines using eggshell-based nano-magnetic solid acid catalyst via anomeric-based oxidation

  • Tahere Akbarpoor
  • Ardeshir KhazaeiEmail author
  • Jaber Yousefi Seyf
  • Negin Sarmasti
  • Maryam Mahmoudiani Gilan
Article
  • 13 Downloads

Abstract

In the present research, the eggshell as a hazardous waste by European Union regulations was converted to a valuable catalyst, namely nano-Fe3O4@(HSO4)2. The as-prepared catalyst, first, was characterized using different techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Back-titration method confirmed the loading of a high surface density of acidic group, namely 8.8 mmol HSO4 per gram of the catalyst. The catalytic property of the as-prepared catalyst was examined in the synthesis of 2-amino-3-cyanopyridines via anomeric-based oxidation (ABO), and hexahydroquinolines derivatives. High yield, short reaction time, solvent-free condition, waste to wealth, and optimization with the design of experiment are the major advantages of the present work. Taken together, these results suggest the conversion of waste to wealth products around the world and usage in organic transformation.

Graphic abstract

Keywords

Eggshell Nano-Fe3O4@Ca(HSO4)2 Hexahydroquinoline 2-amino-3-cyanopyridine 

Notes

Acknowledgements

The authors gratefully acknowledge the Bu-Ali Sina University Research Council and Center of Excellence in Development of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS) for providing support for this work.

Supplementary material

11164_2019_4049_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. 1.
    Z. Chen, Q. Zhu, W. Su, Tetrahedron Lett. 52, 20 (2011)Google Scholar
  2. 2.
    J.-P. Wan, S.-F. Gan, G.-L. Sun, Y.-J. Pan, J. Org. Chem. 74, 7 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Gao, C.H. Tsai, C. Tseng, C.-F. Yao, Tetrahedron 64, 38 (2008)CrossRefGoogle Scholar
  4. 4.
    T.-S. Jin, Y. Yin, L.-B. Liu, T.-S. Li, Arkivoc 14 (2006)Google Scholar
  5. 5.
    S. Kumar, P. Sharma, K.K. Kapoor, M.S. Hundal, Tetrahedron 64, 3 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Mulik, D. Chandam, P. Patil, D. Patil, S. Jagdale, M. Deshmukh, J. Mol. Liq. 179 (2013)Google Scholar
  7. 7.
    A. Jashari, E. Hey-Hawkins, B. Mikhova, G. Draeger, E. Popovski, Molecules 12, 8 (2007)CrossRefGoogle Scholar
  8. 8.
    É. Lukevits, Chem. Heterocycl. Compd. 31, 6 (1995)Google Scholar
  9. 9.
    R. Ghorbani-Vaghei, Z. Toghraei-Semiromi, R. Karimi-Nami, C. R. Chim. 16, 12 (2013)Google Scholar
  10. 10.
    S. Kambe, K. Saito, A. Sakurai, H. Midorikawa, Synthesis 1980, 05 (1980)Google Scholar
  11. 11.
    S. Chen, C. Qin, J.E. Sin, X. Yang, L. Tao, X. Zeng, P. Zhang, C.M. Gao, Y.Y. Jiang, C. Zhang, Y.Z. Chen, W.K. Chui, Future Med. Chem. 9, 1 (2016)Google Scholar
  12. 12.
    J. Deng, T. Sanchez, L.Q. Al-Mawsawi, R. Dayam, R.A. Yunes, A. Garofalo, M.B. Bolger, N. Neamati Bioorg, Med. Chem. 15, 14 (2007)Google Scholar
  13. 13.
    T. Murata, M. Shimada, S. Sakakibara, T. Yoshino, H. Kadono, T. Masuda, M. Shimazaki, T. Shintani, K. Fuchikami, K. Sakai, H. Inbe, K. Takeshita, T. Niki, M. Umeda, K.B. Bacon, K.B. Ziegelbauer, T.B. Lowinger Bioorg. Med. Chem.Lett. 13, 5 (2003)Google Scholar
  14. 14.
    M. Mantri, O. de Graaf, J. van Veldhoven, A. Göblyös, J.K. von Frijtag Drabbe Künzel, T. Mulder-Krieger, R. Link, H. de Vries, M.W. Beukers, J. Brussee, A.P. Ijzerman, J. Med. Chem. 51, 15 (2008)CrossRefGoogle Scholar
  15. 15.
    M.A. Gouda, M.A. Berghot, G.E. Abd El Ghani, A.E.-G.M. Khalil, Synth. Commun. 44, 3 (2014)Google Scholar
  16. 16.
    A.A. Dissanayake, R.J. Staples, A.L. Odom, Adv. Synth. Catal. 356, 8 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Tang, L. Wang, Y. Yao, L. Zhang, W. Wang, Tetrahedron Lett. 52, 4 (2011)Google Scholar
  18. 18.
    M.M. Heravi, S. Yahya Shirazi Beheshtiha, M. Dehghani, N. Hosseintash, J. Iran. Chem. Soc. 12, 11 (2015)Google Scholar
  19. 19.
    J.-F. Zhou, Y.-Z. Song, J.-S. Lv, G.-X. Gong, S. Tu, Synth. Commun. 39, 8 (2009)Google Scholar
  20. 20.
    T. Shintani, H. Kadono, T. Kikuchi, T. Schubert, Y. Shogase, M. Shimazaki Tetrahedron Lett. 44, 35 (2003)Google Scholar
  21. 21.
    S. Khaksar, M. Yaghoobi, J. Fluor. Chem. 142 (2012)Google Scholar
  22. 22.
    L. Srinivasula Reddy, T. Ram Reddy, N.C. Gangi Reddy, R.B. Mohan, Y. Lingappa, J. Heterocycl. Chem. 51, S1 (2014)Google Scholar
  23. 23.
    A.L. Odom, T.J. McDaniel, Acc. Chem. Res. 48, 11 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Khalifeh, M. Ghamari, J. Braz. Chem. Soc. 27 (2016)Google Scholar
  25. 25.
    R. Gupta, A. Jain, M. Jain, R. Joshi, Bull. Korean Chem. Soc. 31, 11 (2010)Google Scholar
  26. 26.
    M.A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour, M. Saeidi-Rad, RSC Adv. 6, 55 (2016)CrossRefGoogle Scholar
  27. 27.
    S.S. Mansoor, K. Aswin, K. Logaiya, P.N. Sudhan, S. Malik, Res. Chem. Intermediat. 40, 2 (2014)Google Scholar
  28. 28.
    M. Abdollahi-Alibeik, N. Sadeghi-Vasafi, A. Moaddeli, A. Rezaeipoor-Anari, Res. Chem. Intermediat. 42, 4 (2016)Google Scholar
  29. 29.
    D. Khalili, Tetrahedron Lett. 57, 15 (2016)Google Scholar
  30. 30.
    F. Tamaddon, S. Ghazi, M.R. Noorbala, J. Mol. Catal. B Enzym., 127 (2016)Google Scholar
  31. 31.
    J. Tong-Shou, W. Ai-Qing, S. Feng, H. Li-Sha, L. Li-Bin, L. Tong-Shuang, Arkivoc, 14 (2006)Google Scholar
  32. 32.
    Z. Han, J. Lv, J. Zhang, Tetrahedron 75, 14 (2019)CrossRefGoogle Scholar
  33. 33.
    S. Talaiefar, S.M. Habibi-Khorassani, M. Sharaki, E. Mollashahi, Polycycl. Aromat. Comp. (2019).  https://doi.org/10.1080/10406638.2019.1570953 CrossRefGoogle Scholar
  34. 34.
    A. Khazaei, N. Sarmasti, J.Y. Seyf, App. Organomet. Chem. 32, 4 (2018)Google Scholar
  35. 35.
    X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater. 270, 1–2 (2004)Google Scholar
  36. 36.
    R. Taylor, H.A. Kooijman. Chem. Eng. Commun. 102, 1 (1991)Google Scholar
  37. 37.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transp. Phenom. (Wiley, 2007)Google Scholar
  38. 38.
    M. A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour, M. S. Rad, RSC Adv. 6, 50100 (2016)CrossRefGoogle Scholar
  39. 39.
    R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993)CrossRefGoogle Scholar
  40. 40.
    M. Andrea, MPIP J. Club Mainz. 29 (2008)Google Scholar
  41. 41.
    S. Salehzadeh, RSC Adv. 7, 39704 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tahere Akbarpoor
    • 1
  • Ardeshir Khazaei
    • 1
    Email author
  • Jaber Yousefi Seyf
    • 2
  • Negin Sarmasti
    • 1
  • Maryam Mahmoudiani Gilan
    • 1
  1. 1.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Chemical EngineeringHamedan University of TechnologyHamedanIran

Personalised recommendations