Skip to main content
Log in

Catalytic hydrolysis of microcystin-LR peptides on the surface of naturally occurring minerals

Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

There are increasing concerns about detoxification of microcystin-LR (MC-LR) over the past few decades. Nevertheless, the removal of MC-LR in water by hydrolysis has not been addressed yet. The hydrolysis efficiencies of MC-LR by six natural minerals were investigated in the present study. Limonite displayed the highest activity among the screened six minerals, which is in accordance with the highest specific surface area (17.8 m2/g) and surface acidity. The hydrolysis of MC-LR was catalyzed by Lewis acid sites on limonite surface. The effects of temperature, pH reaction time and illumination on MC-LR hydrolysis catalyzed by limonite were then investigated. As expected, the high temperature, the addition of either acid or base and long reaction time could enhance the reaction rate, but UV light irradiation had little influence. These results give the indication that naturally occurring minerals can promote the hydrolysis of MC-LR, which gives a more universal view about the natural degradation of microcystins and could lead to more accurate predictions of the duration of microcystin toxicity in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

References

  1. E. Briand, M. Gugger, J.C. François, C. Bernard, J.F. Humbert, C. Quiblier, Appl. Environ. Microbiol. 74, 3839 (2008)

    Article  CAS  Google Scholar 

  2. R.M. Dawson, The toxicology of microcystins. Toxicon 36, 953 (1998)

    Article  CAS  Google Scholar 

  3. S. Imanishi, K. Harada, Toxicon 43, 651 (2004)

    Article  CAS  Google Scholar 

  4. J. Yang, D.X. Chen, A.P. Deng, Y.P. Huang, C.C. Chen, Res. Chem. Intermed. 37, 47 (2011)

    Article  Google Scholar 

  5. J.S. An, W.W. Carmichael, Toxicon 32, 1495 (1994)

    Article  CAS  Google Scholar 

  6. I. Liu, L.A. Lawton, P.K. Robertson, Environ. Sci. Technol. 37, 3214 (2003)

    Article  CAS  Google Scholar 

  7. Y.F. Fang, Y.P. Huang, J. Yang, P. Wang, G.W. Cheng, Environ. Sci. Technol. 45, 1593 (2011)

    Article  CAS  Google Scholar 

  8. D.G. Bourne, G.J. Jones, R.L. Blakeley, A. Jones, A.P. Negri, P. Riddles, Appl. Environ. Microbiol. 62, 4086 (1996)

    Article  CAS  Google Scholar 

  9. M. Brigante, G. Zanini, M. Avena, J. Hazard. Mater. 184, 241 (2010)

    Article  CAS  Google Scholar 

  10. R. Olsson, R. Giesler, J.S. Loring, P. Persson, Environ. Sci. Technol. 46, 285 (2016)

    Article  Google Scholar 

  11. K. Marshall-Bowman, S. Ohara, D.A. Sverjensky, R.M. Hazen, H.J. Cleaves, Geochim. Cosmochim. Acta 74, 5852 (2010)

    Article  CAS  Google Scholar 

  12. Y. Fang, Y. Zhang, W. Ma, D.M. Johnson, Y.P. Huang, Appl. Catal. B Environ. 160–161, 597 (2014)

    Article  Google Scholar 

  13. M. Reichelt, C. Hummert, B. Luckas, Chromatographia 49, 671 (1999)

    Article  CAS  Google Scholar 

  14. Y. Fang, W. Zhou, C. Tang, Y. Huang, D.M. Johnson, Z.J. Ren, Environ. Sci. Technol. 52, 6426 (2018)

    Article  CAS  Google Scholar 

  15. N. Lahl, K. Singh, L. Singheiser, K. Hilpert, D. Bahadur, J. Mater. Sci. 35, 3089 (2000)

    Article  CAS  Google Scholar 

  16. V. Dupont, A. Lecoq, J.P. Mangeot, A. Aubry, G. Boussard, M. Marraud, J. Am. Chem. Soc. 115, 8898 (2002)

    Article  Google Scholar 

  17. A.F. Gualtieri, C. Giacobbe, C. Viti, Am. Mineral. 97, 666 (2015)

    Article  Google Scholar 

  18. D.S. Baldwin, J.K. Beattie, L.M. Coleman, D.R. Jones, Environ. Sci. Technol. 29, 1706 (1995)

    Article  CAS  Google Scholar 

  19. A. Torrents, A. Stone, Environ. Sci. Technol. 26, 210 (1992)

    Article  Google Scholar 

  20. A. Torrents, A.T. Stone, Environ. Sci. Technol. 25, 143 (1991)

    Article  CAS  Google Scholar 

  21. J. Geboers, D.V.S. Van, K. Carpentier, P. Jacobs, B. Sels, Chem. Commun. 47, 5590 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21577078, 21677086 and 21407092), the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021) and Three Gorges University Master's Thesis Training Fund (2019SSPY154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingping Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Cao, X., Zhou, W. et al. Catalytic hydrolysis of microcystin-LR peptides on the surface of naturally occurring minerals. Res Chem Intermed 46, 1141–1152 (2020). https://doi.org/10.1007/s11164-019-04024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04024-7

Keywords

Navigation