Skip to main content
Log in

One-pot co-precipitation of copper–manganese–zinc oxide catalysts for the oxidation of CO and SO2 in the presence of ultrasonic irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This paper studies the effect of addition of Zn and ultrasound-assisted co-precipitation on Cu-Mn oxide catalysts for the oxidation of CO. Cu-Mn-Zn oxide catalysts were synthesised at different molar ratios and characterised and evaluated for CO oxidation performance. Scanning electron microscopy (SEM) imaging showed that the morphologies and textural properties of the catalysts were markedly affected by the different synthesis conditions, notably the formation of different geometries of various sizes depending on the Zn loading used. Characterisation results also revealed that both the addition of Zn and the use of ultrasound-assisted synthesis improved the dispersion of metal constituents in the mixed oxide phase, evident from the lower peak intensity and smaller crystallite sizes and more dispersed particles as seen in SEM imaging. Gas adsorption results revealed that Zn loading influences the porosity and adsorption capability of the catalyst. Zn-loaded samples exhibited a H3 hysteresis loop, which suggests the presence of slit-like pores. Temperature-programmed reduction results indicate that sonicated samples exhibit improved reduction capabilities which can increase overall catalytic activity. Results showed that Cu/Mn/Zn = 2:1:0.5 displayed the highest activity, showing 76.0% and 82.8% for CO and SO2 at 130 °C, respectively. This work has confirmed that the addition of 0.5 molar ratio of Zn and the presence of ultrasonic treatment during the catalyst synthesis have improved the overall catalytic performance, while further addition in Zn concentrations resulted in an adverse effect on the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Liu, J. Deng, S. Xie, Z. Wang, H. Dai, Chin. J. Catal. 37, 1193 (2016)

    CAS  Google Scholar 

  2. S. Dey, G.C. Dhal, Mater. Sci. Energy Technol. 2, 575 (2019)

    Google Scholar 

  3. E.C. Njagi, C.-H. Chen, H. Genuino, H. Galindo, H. Huang, S.L. Suib, Appl. Catal. B Environ. 99, 103 (2010)

    CAS  Google Scholar 

  4. S. Dey, G.C. Dhal, D. Mohan, R. Prasad, R.N. Gupta, Appl. Surf. Sci. 441, 303 (2018)

    CAS  Google Scholar 

  5. S. Dey, G.C. Dhal, R. Prasad, D. Mohan, Bull. Chem. React. Eng. Catal. 12, 370 (2017)

    CAS  Google Scholar 

  6. T. Biemelt, K. Wegner, J. Teichert, M.R. Lohe, J. Martin, J. Grothe, S. Kaskel, Appl. Catal. B Environ. 184, 208 (2016)

    CAS  Google Scholar 

  7. L. Shi, Z.-H. Hu, G.-M. Deng, W.-C. Li, Chin. J. Catal. 36, 1920 (2015)

    CAS  Google Scholar 

  8. L. Cai, Z. Hu, P. Branton, W. Li, Chin. J. Catal. 35, 159 (2014)

    CAS  Google Scholar 

  9. Y. Zhou, X. Liu, K. Wang, J. Li, X. Zhang, X. Jin, X. Tang, X. Zhu, R. Zhang, X. Jiang, B. Liu, Results Phys. 12, 1893 (2019)

    Google Scholar 

  10. Y. Guo, C. Zhao, J. Lin, C. Li, S. Lu, Catal. Commun. 99, 1 (2017)

    CAS  Google Scholar 

  11. C. Jones, S.H. Taylor, A. Burrows, M.J. Crudace, C.J. Kiely, G.J. Hutchings, Chem. Commun. 14, 1707 (2008)

    Google Scholar 

  12. Z. Ye, J.-M. Giraudon, N. Nuns, P. Simon, N. De Geyter, R. Morent, J.-F. Lamonier, Appl. Catal. B Environ. 223, 154 (2018)

    CAS  Google Scholar 

  13. T. Machej, E.M. Serwicka, M. Zimowska, R. Dula, A. Michalik-Zym, B. Napruszewska, W. Rojek, R. Socha, Appl. Catal. A Gen. 474, 87 (2014)

    CAS  Google Scholar 

  14. Y.H. Yap, M.S.W. Lim, Z.Y. Lee, K.C. Lai, M.A. Jamaal, F.H. Wong, H.K. Ng, S.S. Lim, T.J. Tiong, Ultrason. Sonochem. 40, 57 (2018)

    CAS  PubMed  Google Scholar 

  15. H. Chen, J. Wang, H. Li, D. Wu, M. Yao, Y. Li, Appl. Catal. A Gen. 427, 73 (2012)

    Google Scholar 

  16. X. Li, L. Wang, Q. Xia, Z. Liu, Z. Li, Catal. Commun. 14, 15 (2011)

    CAS  Google Scholar 

  17. E.-C. Jeon, K.-J. Kim, J.-C. Kim, K.-H. Kim, S.-G. Chung, Y. Sunwoo, Y.-K. Park, Res. Chem. Intermed. 34, 8 (2008)

    Google Scholar 

  18. Y. Guo, C. Li, S. Lu, C. Zhao, RSC Adv. 6, 7181 (2016)

    CAS  Google Scholar 

  19. R. Kikuchi, S. Maeda, K. Sasaki, S. Wennerström, K. Eguchi, Appl. Catal. A Gen. 232, 23 (2002)

    CAS  Google Scholar 

  20. G.G. Xanthopoulou, V.A. Novikov, Y.A. Knysh, A.P. Amosov, Eurasian Chem. J. 17, 17 (2015)

    Google Scholar 

  21. S.B. Kanungo, J. Catal. 58, 419 (1979)

    CAS  Google Scholar 

  22. G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui, S.H. Taylor, Appl. Catal. A Gen. 166, 143 (1998)

    CAS  Google Scholar 

  23. S. Sancheti, C. Saini, R. Ambati, P. Gogate, Catal. Today 300, 50 (2018)

    CAS  Google Scholar 

  24. M.I. Díez-García, V. Manzi-Orezzoli, M. Jankulovska, S. Anandan, P. Bonete, R. Gómez, T. Lana-Villarreal, Phys. Procedia 63, 85 (2015)

    Google Scholar 

  25. R. Ambati, P.R. Gogate, Ultrason. Sonochem. 40, 91 (2018)

    CAS  PubMed  Google Scholar 

  26. E.A. Burakova, E.V. Galunin, A.V. Rukhov, N.R. Memetov, A.G. Tkachev, Res. Chem. Intermed. 42, 9 (2016)

    Google Scholar 

  27. A.A. Gobouri, Res. Chem. Intermed. 42, 5 (2016)

    Google Scholar 

  28. P. Rezaei, M. Rezaei, F. Meshkani, Ultrason. Sonochem. 57, 212 (2019)

    CAS  PubMed  Google Scholar 

  29. F.C. Buciuman, F. Patcas, T. Hahn, Stud. Surf. Sci. Catal. 138, 315 (2001)

    CAS  Google Scholar 

  30. N.G. Shabalala, S. Maddila, S.B. Jonnalagadda, Res. Chem. Intermed. 42, 12 (2016)

    Google Scholar 

  31. B. Solsona, G.J. Hutchings, T. Garcia, S.H. Taylor, New J. Chem. 28, 708 (2004)

    CAS  Google Scholar 

  32. M. Yang, S. Li, G. Chen, Appl. Catal. B Environ. 101, 409 (2011)

    CAS  Google Scholar 

  33. L. Mo, X. Zheng, C.-T. Yeh, Chem. Commun. 12, 1426 (2004)

    Google Scholar 

  34. S. Fujita, H. Mitani, C. Zhang, K. Li, F. Zhao, M. Arai, Mol. Catal. 442, 12 (2017)

    CAS  Google Scholar 

  35. Q. Sun, Y. Men, J. Wang, S. Chai, Q. Song, Inorg. Chem. Commun. 92, 51 (2018)

    CAS  Google Scholar 

  36. A.A. Mirzaei, H.R. Shaterian, S.H. Taylor, G.J. Hutchings, Catal. Lett. 87, 103 (2003)

    CAS  Google Scholar 

  37. O. Tursunov, L. Kustov, Z. Tilyabaev, J. Taiwan Inst. Chem. Eng. 78, 416 (2017)

    CAS  Google Scholar 

  38. F.H. Wong, T.J. Tiong, L.K. Leong, K.-S. Lin, Y.H. Yap, Ind. Eng. Chem. Res. 57, 3163 (2018)

    CAS  Google Scholar 

  39. T.J. Tiong, T. Chandesa, Y.H. Yap, Ultrason. Sonochem. 36, 78 (2017)

    CAS  PubMed  Google Scholar 

  40. H. Chen, X. Tong, Y. Li, Appl. Catal. A Gen. 370, 59 (2009)

    CAS  Google Scholar 

  41. J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal. 251, 7 (2007)

    CAS  Google Scholar 

  42. J.-L. Cao, Y. Wang, T.-Y. Zhang, S.-H. Wu, Z.-Y. Yuan, Appl. Catal. B Environ. 78, 120 (2008)

    CAS  Google Scholar 

  43. D. Chen, S. Sharma, A. Mudhoo, Handbook on Applications of Ultrasound: Sonochemistry for Sustainability, vol. 1 (CRC Press, Baca Raton, 2011)

    Google Scholar 

  44. S.K. Parida, J. Mohapatra, D.K. Mishra, Mater. Lett. 181, 116 (2016)

    CAS  Google Scholar 

  45. H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron. 19, 26 (2013)

    Google Scholar 

  46. V. Prakash, R.K. Diwan, U.K. Niyogi, J. Pure Appl. Phys. 53, 753 (2015)

    Google Scholar 

  47. N. Mironova-Ulmane, A. Kuzmin, V. Skvortsova, G. Chikvaidze, I. Sildos, J. Grabis, D. Jankoviča, A. Dindune, M. Mairov, Acta Phys. Pol. A 133, 1013 (2018)

    CAS  Google Scholar 

  48. K.S.W. Sing, R.T. Williams, Adsorpt. Sci. Technol. 22, 773 (2004)

    CAS  Google Scholar 

  49. M. Răciulete, G. Layrac, F. Papa, C. Negrilă, D. Tichit, I.-C. Marcu, Catal. Today 306, 276 (2018)

    Google Scholar 

  50. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    CAS  Google Scholar 

  51. A. Annuar, I. Yakub, N. Sutan, C. Hipolito, Y. Taufiq-Yap, J. Appl. Sci. Process Eng. 1, 28 (2014)

    Google Scholar 

  52. J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, J. Catal. 219, 389 (2003)

    CAS  Google Scholar 

  53. S. Lew, A.F. Sarofim, M. Flytzani-Stephanopoulos, Chem. Eng. Sci. 47, 1421 (1992)

    CAS  Google Scholar 

  54. S. Vepřek, D.L. Cocke, S. Kehl, H.R. Oswald, J. Catal. 100, 250 (1986)

    Google Scholar 

  55. P. Amigues, S.J. Teichner, Discuss. Faraday Soc. 41, 362 (1966)

    Google Scholar 

  56. K. Shimomura, K. Ogawa, M. Oba, Y. Kotera, J. Catal. 52, 191 (1978)

    CAS  Google Scholar 

  57. J.B. Friedrich, M.S. Wainwright, D.J. Young, J. Catal. 80, 1 (1983)

    CAS  Google Scholar 

  58. J.A. Dean, Lange’s Handbook of Chemistry, 2nd edn. (McGraw-Hill, New York, 1979)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Department of Chemical and Environmental Engineering at the University of Nottingham Malaysia for supporting this work via the MEng Research Project fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Joyce Tiong or Thomas C. K. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J.K., Lim, M.S.W., Tiong, T.J. et al. One-pot co-precipitation of copper–manganese–zinc oxide catalysts for the oxidation of CO and SO2 in the presence of ultrasonic irradiation. Res Chem Intermed 45, 6003–6019 (2019). https://doi.org/10.1007/s11164-019-04016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04016-7

Keywords

Navigation