Research on Chemical Intermediates

, Volume 45, Issue 12, pp 5935–5946 | Cite as

Visible light-induced conversion of biomass-derived chemicals integrated with hydrogen evolution over 2D Ni2P–graphene–TiO2

  • Jing-Yu Li
  • Xin Xin
  • Yue-Hua Li
  • Fan Zhang
  • Masakazu Anpo
  • Yi-Jun XuEmail author


Highly selective photocatalytic conversion of biomass-derived chemicals into value-added chemicals and clean hydrogen energy under mild conditions by simultaneously utilizing photogenerated holes and electrons is in line with the theme of sustainable development of green chemistry. Herein, a two-dimensional (2D) heterostructure of ternary Ni2P–graphene–lepidocrocite TiO2 (NPG–TiO2) with intimately interfacial contact has been successfully fabricated, which exhibits significantly elevated photocatalytic performance toward coevolution of benzaldehyde (2.17 mmol/h/g) and hydrogen (1.97 mmol/h/g) from biomass-derived benzyl alcohol in aqueous solution under the visible light irradiation. Mechanistic studies reveal that in this ternary heterostructure, graphene serves as an electron relay mediator to facilitate the flow of electrons from TiO2 to Ni2P due to its inherent electrical conductivity, and the Ni2P provides the active sites for photocatalytic proton reduction to hydrogen. It is anticipated that this work would make a contribution to rational design of 2D flat-structured multi-component photocatalysts for selective conversion of biomass-derived chemicals coupled with hydrogen evolution.

Graphic abstract


Graphene Nickel phosphide Lepidocrocite TiO2 Benzyl alcohol Charge transfer 



The support from the National Natural Science Foundation of China (NSFC) (21872029, U1463204, 21173045), the Award Program for Minjiang Scholar Professorship, the Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Rolling Grant (2017J07002), the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (NO. 2014A05), the 1st Program of Fujian Province for Top Creative Young Talents and the Program for Returned High-Level Overseas Chinese Scholars of Fujian Province is gratefully acknowledged.

Supplementary material

11164_2019_4011_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1117 kb)


  1. 1.
    S. Liu, Z.-R. Tang, Y. Sun, J. Colmenares, Y.-J. Xu, Chem. Soc. Rev. 44, 5053 (2015)PubMedGoogle Scholar
  2. 2.
    M. Meng, Y. Fu, X. Wang, J. Clean. Prod. 177, 752 (2018)Google Scholar
  3. 3.
    M. Ghiassee, M. Rezaei, F. Meshkani, S. Mobini, Res. Chem. Intermed. 45, 4501 (2019)Google Scholar
  4. 4.
    N. Zhang, M.-Y. Qi, L. Yuan, X. Fu, Z.-R. Tang, J. Gong, Y.-J. Xu, Angew. Chem. Int. Ed. 58, 10003 (2019)Google Scholar
  5. 5.
    G. Lan, Y.-Y. Zhu, S.S. Veroneau, Z. Xu, D. Micheroni, W. Lin, J. Am. Chem. Soc. 140, 5326 (2018)PubMedGoogle Scholar
  6. 6.
    Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48, 2109 (2019)PubMedGoogle Scholar
  7. 7.
    Y.-H. Li, M.-Y. Qi, J.-Y. Li, Z.-R. Tang, Y.-J. Xu, Appl. Catal. B 257, 117934 (2019)Google Scholar
  8. 8.
    M. Zhukovskyi, H. Yashan, M. Kuno, Res. Chem. Intermed. 45, 4249 (2019)Google Scholar
  9. 9.
    G. Han, Y.-H. Jin, R.A. Burgess, N.E. Dickenson, X.-M. Cao, Y. Sun, J. Am. Chem. Soc. 139, 15584 (2017)PubMedGoogle Scholar
  10. 10.
    N. Luo, T. Montini, J. Zhang, P. Fornasiero, E. Fonda, T. Hou, W. Nie, J. Lu, J. Liu, M. Heggen, L. Lin, C. Ma, M. Wang, F. Fan, S. Jin, F. Wang, Nat. Energy 4, 575 (2019)Google Scholar
  11. 11.
    D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser, E. Reisner, Nat. Energy 2, 17021 (2017)Google Scholar
  12. 12.
    P. Zhang, Y.-J. Guo, J. Chen, Y.-R. Zhao, J. Chang, H. Junge, M. Beller, Y. Li, Nat. Catal. 1, 332 (2018)Google Scholar
  13. 13.
    M.F. Kuehnel, E. Reisner, Angew. Chem. Int. Ed. 57, 3290 (2018)Google Scholar
  14. 14.
    M. Latorre-Sánchez, A. Primo, H. García, Angew. Chem. Int. Ed. 52, 11813 (2013)Google Scholar
  15. 15.
    S.-H. Li, S. Liu, J.C. Colmenares, Y.-J. Xu, Green Chem. 18, 594 (2016)Google Scholar
  16. 16.
    W.-J. Liu, H. Jiang, H.-Q. Yu, Energy Environ. Sci. 12, 1751 (2019)Google Scholar
  17. 17.
    N. Luo, M. Wang, H. Li, J. Zhang, H. Liu, F. Wang, ACS Catal. 6, 7716 (2016)Google Scholar
  18. 18.
    B. Zhou, J. Song, Z. Zhang, Z. Jiang, P. Zhang, B. Han, Green Chem. 19, 1075 (2017)Google Scholar
  19. 19.
    X. Liu, X. Duan, W. Wei, S. Wang, B.-J. Ni, Green Chem. 21, 4266 (2019)Google Scholar
  20. 20.
    S. Xu, P. Zhou, Z. Zhang, C. Yang, B. Zhang, K. Deng, S. Bottle, H. Zhu, J. Am. Chem. Soc. 139, 14775 (2017)PubMedGoogle Scholar
  21. 21.
    S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, J. Catal. 274, 76 (2010)Google Scholar
  22. 22.
    X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen, Y. Wang, Nat. Catal. 1, 772 (2018)Google Scholar
  23. 23.
    X. Wu, S. Xie, C. Liu, C. Zhou, J. Lin, J. Kang, Q. Zhang, Z. Wang, Y. Wang, ACS Catal. 9, 8443 (2019)Google Scholar
  24. 24.
    D. Jiang, X. Chen, Z. Zhang, L. Zhang, Y. Wang, Z. Sun, R.M. Irfan, P. Du, J. Catal. 357, 147 (2018)Google Scholar
  25. 25.
    H.-F. Ye, R. Shi, X. Yang, W.-F. Fu, Y. Chen, Appl. Catal. B 233, 70 (2018)Google Scholar
  26. 26.
    X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Appl. Catal. B 237, 43 (2018)Google Scholar
  27. 27.
    Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang, H. Wan, Nat. Commun. 4, 2141 (2013)PubMedGoogle Scholar
  28. 28.
    S.L. Wang, X. Luo, X. Zhou, Y. Zhu, X. Chi, W. Chen, K. Wu, Z. Liu, S.Y. Quek, G.Q. Xu, J. Am. Chem. Soc. 139, 15414 (2017)PubMedGoogle Scholar
  29. 29.
    L. Yuan, K.-Q. Lu, F. Zhang, X. Fu, Y.-J. Xu, Appl. Catal. B 237, 424 (2018)Google Scholar
  30. 30.
    N. Zhang, Y. Zhang, X. Pan, M.-Q. Yang, Y.-J. Xu, J. Phys. Chem. C 116, 18023 (2012)Google Scholar
  31. 31.
    Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, ACS Nano 13, 295 (2019)PubMedGoogle Scholar
  32. 32.
    S. Bai, J. Ge, L. Wang, M. Gong, M. Deng, Q. Kong, L. Song, J. Jiang, Q. Zhang, Y. Luo, Y. Xie, Y. Xiong, Adv. Mater. 26, 5689 (2014)PubMedGoogle Scholar
  33. 33.
    A. Indra, A. Acharjya, P.W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich, S. Lochbrunner, A. Thomas, M. Driess, Angew. Chem. Int. Ed. 56, 1653 (2017)Google Scholar
  34. 34.
    E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, J. Am. Chem. Soc. 135, 9267 (2013)Google Scholar
  35. 35.
    Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 6710 (2014)Google Scholar
  36. 36.
    Z. Qin, F. Xue, Y. Chen, S. Shen, L. Guo, Appl. Catal. B 217, 551 (2017)Google Scholar
  37. 37.
    S.-H. Li, N. Zhang, X. Xie, R. Luque, Y.-J. Xu, Angew. Chem. Int. Ed. 57, 13082 (2018)Google Scholar
  38. 38.
    P. Ye, X. Liu, J. Iocozzia, Y. Yuan, L. Gu, G. Xu, Z. Lin, J. Mater. Chem. A 5, 8493 (2017)Google Scholar
  39. 39.
    Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu, Z.-G. Zou, ACS Catal. 6, 532 (2015)Google Scholar
  40. 40.
    T. Hu, K. Dai, J. Zhang, G. Zhu, C. Liang, Appl. Surf. Sci. 481, 1385 (2019)Google Scholar
  41. 41.
    J. Wen, Z. Feng, H. Liu, T. Chen, Y. Yang, S. Li, S. Sheng, G. Fang, Appl. Surf. Sci. 485, 462 (2019)Google Scholar
  42. 42.
    X.-Y. Zhang, B.-Y. Guo, Q.-W. Chen, B. Dong, J.-Q. Zhang, J.-F. Qin, J.-Y. Xie, M. Yang, L. Wang, Y.-M. Chai, C.-G. Liu, Int. J. Hydrog. Energy 44, 14908 (2019)Google Scholar
  43. 43.
    Y. Zhang, J. Xu, J. Xia, F. Zhang, Z. Wang, ACS Appl. Mater. Interfaces 10, 39151 (2018)PubMedGoogle Scholar
  44. 44.
    S.B. Patil, H.J. Kim, H.-K. Lim, S.M. Oh, J. Kim, J. Shin, H. Kim, J.W. Choi, S.-J. Hwang, ACS Energy Lett. 3, 412 (2018)Google Scholar
  45. 45.
    T. Gao, P. Norby, H. Okamoto, H. Fjellvåg, Inorg. Chem. 48, 9409 (2009)PubMedGoogle Scholar
  46. 46.
    Y. Chao, J. Lai, Y. Yang, P. Zhou, Y. Zhang, Z. Mu, S. Li, J. Zheng, Z. Zhu, Y. Tan, Catal. Sci. Technol. 8, 3372 (2018)Google Scholar
  47. 47.
    K. Wu, P. Wu, J. Zhu, C. Liu, X. Dong, J. Wu, G. Meng, K. Xu, J. Hou, Z. Liu, X. Guo, Chem. Eng. J. 360, 221 (2019)Google Scholar
  48. 48.
    C. Han, M.-Y. Qi, Z.-R. Tang, J. Gong, Y.-J. Xu, Nano Today 27, 48 (2019)Google Scholar
  49. 49.
    N. Zhang, C. Han, X. Fu, Y.-J. Xu, Chem 4, 1832 (2018)Google Scholar
  50. 50.
    C. Han, N. Zhang, Y.-J. Xu, Nano Today 11, 351 (2016)Google Scholar
  51. 51.
    N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 10307 (2015)PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jing-Yu Li
    • 1
    • 2
  • Xin Xin
    • 1
    • 2
  • Yue-Hua Li
    • 1
    • 2
  • Fan Zhang
    • 2
  • Masakazu Anpo
    • 1
    • 3
  • Yi-Jun Xu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Photocatalysis on Energy and Environment, College of ChemistryFuzhou UniversityFuzhouChina
  2. 2.College of Chemistry, New CampusFuzhou UniversityFuzhouChina
  3. 3.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations