Advertisement

Direct dimethyl ether synthesis over mesoporous Cu–Al2O3 catalyst via CO hydrogenation

  • Caixia Zhu
  • Yuan Fang
  • Zaiqi Luo
  • Cheng Zhang
  • Xipin Zhang
  • Jie LiEmail author
  • Jiangang Chen
  • Li TanEmail author
Article
  • 13 Downloads

Abstract

Syngas conversion to dimethyl ether (DME) is an important reaction (STD) in C1 chemistry since DME not only possesses high value but also can be used as a vital chemical intermediate. Here, we design a Cu-based mesoporous alumina catalyst to realize the DME synthesis reaction. It exhibits high catalytic activity in terms of CO conversion of 21.2% and DME selectivity of 95.9% according to its synergistic effect between the Cu and alumina. In the Cu-based alumina catalyst, the Cu–Cu bond is for converting CO to methanol and the Cu–Al bond is for the formed methanol dehydration to DME. Therefore, the well-dispersed Cu nanoparticles provide amounts of active sites for methanol synthesizing, at the same time as the strong metal–support interaction between the Cu nanoparticles and mesoporous alumina offering Cu–Al active sites for methanol quick dehydration to DME. In addition, the mesopores supplied by alumina support also accelerate the mass transfer and diffusion, boosting the CO activation. This study points out the real active phase for DME synthesis, which plays an important guiding role in design of related catalysts for DME synthesis.

Graphic abstract

The process of syngas conversion to DME over Cu-based mesoporous alumina catalyst.

Keywords

Syngas conversion Dimethyl ether synthesis Copper Mesoporous material 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21902029) and Foundation of State Key Laboratory of Coal Conversion (No. J19-20-612).

References

  1. 1.
    P. Prasad, J. Bae, S. Kang, Y. Lee, K. Jun, Fuel Process. Technol. 89, 1281 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Sun, G. Yang, Y. Yoneyama, N. Tsubaki, ACS Catal. 4, 3346 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Takeishi, Biofuels 1, 217 (2010)CrossRefGoogle Scholar
  4. 4.
    D. Mao, W. Yang, J. Xia, B. Zhang, Q. Song, Q. Chen, J. Catal. 230, 140 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Papari, M. Kazemeini, M. Fattahi, J. Nat. Gas Chem. 21, 148 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Hu, Y. Wang, C. Cao, D. Elliott, D. Stevens, J. White, Ind. Eng. Chem. Res. 44, 1722 (2005)CrossRefGoogle Scholar
  7. 7.
    C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, Fuel 87, 1014 (2008)CrossRefGoogle Scholar
  8. 8.
    Q. Xie, P. Chen, P. Peng, S. Liu, P. Peng, B. Zhang, Y. Cheng, Y. Wan, Y. Liu, R. Ruan, RSC Adv. 5, 26301 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Azizi, M. Rezaeimanesh, T. Tohidian, M. Rahimpour, Chem. Eng. Process. 82, 150 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Xia, D. Mao, B. Zhang, Q. Chen, Y. Tang, Catal. Lett. 98, 235 (2004)CrossRefGoogle Scholar
  11. 11.
    Z. Gao, W. Huang, L. Yin, L. Hao, K. Xie, Catal. Lett. 127, 354 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Ultrason. Sonochem. 21, 663 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Khoshbin, M. Haghighi, Chem. Eng. Res. Des. 91, 1111 (2013)CrossRefGoogle Scholar
  14. 14.
    F. Trippe, M. Fröhling, F. Schultmann, R. Stahl, E. Henrich, A. Dalai, Fuel Process. Technol. 106, 577 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Lee, A. Sardesai, Top. Catal. 32, 197 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Venvik, J. Yang, Catal. Today 285, 135 (2017)CrossRefGoogle Scholar
  17. 17.
    A. García-Trenco, A. Vidal-Moya, A. Martínez, Catal. Today 179, 43 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Huang, H. Lee, K. Liang, C. Tzeng, W. Chen, Int. J. Hydrogen Energy 40, 13583 (2015)CrossRefGoogle Scholar
  19. 19.
    A. García-Trenco, A. Martínez, Appl. Catal. A-Gen. 411–412, 170 (2012)CrossRefGoogle Scholar
  20. 20.
    T. Semelsberger, R. Borup, H. Greene, J. Power Sources 156, 497 (2006)CrossRefGoogle Scholar
  21. 21.
    D. Liu, X. Hua, D. Fang, J. Nat. Gas Chem. 16, 193 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Ahn, S. Kim, H. Hahm, Res. Chem. Intermed. 34, 793 (2008)CrossRefGoogle Scholar
  23. 23.
    D. Jin, B. Zhu, Z. Hou, J. Fei, H. Lou, X. Zheng, Fuel 86, 2707 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Asthana, C. Samanta, R. Voolapalli, B. Saha, J. Mater. Chem. A 5, 2649 (2017)CrossRefGoogle Scholar
  25. 25.
    T. Ogawa, N. Inoue, T. Shikada, Y. Ohno, J. Nat. Gas Chem. 12, 219 (2003)Google Scholar
  26. 26.
    F. Ramos, A. Farias, L. Borges, J. Monteiro, M. Fraga, E. Aguiar, L. Appel, Catal. Today 101, 39 (2005)CrossRefGoogle Scholar
  27. 27.
    L. Wang, Y. Qi, Y. Wei, D. Fang, S. Meng, Z. Liu, Catal. Lett. 106, 61 (2006)CrossRefGoogle Scholar
  28. 28.
    J. Palgunadi, I. Yati, K. Jung, React. Kinet. Mech. Catal. 101, 117 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Kim, S. Lee, J. Lee, Y. Choi, J. Shin, J.K. Lee, Res. Chem. Intermed. 42, 249 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Peng, A. Wang, B. Toseland, P. Tijm, Ind. Eng. Chem. Res. 38, 4381 (1999)CrossRefGoogle Scholar
  31. 31.
    K. Saravanan, H. Ham, N. Tsubaki, J. Bae, Appl. Catal. B Environ. 217, 494 (2017)CrossRefGoogle Scholar
  32. 32.
    A. García-Trenco, A. Martínez, Appl. Catal. A Gen. 493, 40 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Sun, G. Yang, Q. Ma, I. Ooki, A. Taguchi, T. Abe, Q. Xie, Y. Yoneyama, N. Tsubaki, J. Mater. Chem. A 2, 8637 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Said, M. El-Wahab, M. El-Aal, Res. Chem. Intermed. 42, 1537 (2015)CrossRefGoogle Scholar
  35. 35.
    H. Ham, J. Kim, S. Cho, J. Choi, D. Moon, J. Bae, ACS Catal. 6, 5629 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Li, X.G. Zhang, T. Inui, Appl. Catal. A Gen. 147, 23 (1996)CrossRefGoogle Scholar
  37. 37.
    J. Jeong, C. Ahn, D. Lee, S. Um, J. Bae, Catal. Lett. 143, 666 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Flores, D. Peixoto, L. Appel, R. Avillez, M. Silva, Catal. Today 172, 218 (2011)CrossRefGoogle Scholar
  39. 39.
    D. Sung, Y. Kim, E. Park, J. Yie, Res. Chem. Intermed. 36, 653 (2010)CrossRefGoogle Scholar
  40. 40.
    T. Takeguchi, K. Yanagisawa, T. Inui, M. Inoue, Appl. Catal. A Gen. 192, 201 (2000)CrossRefGoogle Scholar
  41. 41.
    J. Bae, S. Kang, Y. Lee, K. Jun, Appl. Catal. B Environ. 90, 426 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Biesinger, L. Lau, A. Gerson, R. Smart, Appl. Surf. Sci. 257, 887 (2010)CrossRefGoogle Scholar
  43. 43.
    D. Tahir, S. Tougaard, J. Phys. Condens. Mater. 24, 175002 (2012)CrossRefGoogle Scholar
  44. 44.
    J. Yuan, J. Zhang, M. Yang, W. Meng, H. Wang, J. Lu, Catalysts 8, 171 (2018)CrossRefGoogle Scholar
  45. 45.
    S. Goh, A. Buckley, R. Lamb, R. Rosenberg, D. Moran, Geochim. Cosmochim. Acta 70, 2210 (2006)CrossRefGoogle Scholar
  46. 46.
    S. Poulston, P. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24, 811 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of In Situ/Operando Studies of Catalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of ChemistryFuzhou UniversityFuzhouChina
  2. 2.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  3. 3.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina

Personalised recommendations