Advertisement

Nature of Cu active sites in zeolite-based catalysts for selective catalytic oxidation of methane

  • Han Sun
  • Chuntong Liu
  • Haijun ChenEmail author
Article
  • 1 Downloads

Abstract

Though copper-containing zeolites (Cu–zeolites) have shown great potential in the direct conversion of methane to methanol under low temperature, the yields of methanol and the catalytic efficiency remain far behind the necessary level for industrialization. The recent progress in Cu–zeolites catalysts for the direct conversion of methane to methanol by selective oxidation, especially in the investigation on the nature of Cu active species presented in zeolites, was summarized in this mini-review.

Keywords

Cu–zeolites Methane to methanol Selective catalytic oxidation 

Notes

Acknowledgements

This work is supported by The National Key Research and Development Program of China (2017YFE0129000), Tianjin Municipal Science and Technology Bureau (18ZXSZSF00070, 18ZXSZSF00210) and National Engineering Laboratory for Mobile Source Emission Control Technology (NELMS2018A14).

References

  1. 1.
    C.E. Gounaris, E.L. First, J. Wei, C.A. Floudas, R. Ranjan, M. Tsapatsis, ZEOMICS: Zeolites and Microporous Structures CharacterizationGoogle Scholar
  2. 2.
    H.H. Kung, Res. Chem. Intermed. 26, 121 (2000)CrossRefGoogle Scholar
  3. 3.
    N. Li, F. Jiao, X.L. Pan, Y.X. Chen, J.Y. Feng, G. Li, X.H. Bao, Angew. Chem. Int. Ed. 58, 7400 (2019)CrossRefGoogle Scholar
  4. 4.
    R.A. Kerr, Science 328, 1624 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    T.A. Moore, Int. J. Coal Geol. 101, 36 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Konno, T. Fujii, A. Sato, K. Akamine, M. Naiki, Y. Masuda, K. Yamaoto, J. Nagao, Energy Fuels 31, 2607 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Shen, Y. Zhan, S. Li, F. Ning, Y. Du, Y. Huang, T. He, X. Zhou, Chem. Sci. 8, 7498 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Z. Zakaria, S.K. Kamarudin, Renew. Sustain. Energy Rev. 65, 250 (2016)CrossRefGoogle Scholar
  9. 9.
    M.C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R.M. Navarro, J.L.G. Fierro, Catal. Today 171(1), 15 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56, 16464 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Van de Loosdrecht, F.G. Botes, I.M. Ciobica, A.C. Ferreira, P. Gibson, D.J. Moodley, A.M. Saib, J.L. Visagie, C.J. Weststrate, J.W. Niemantsverdriet, Comprehensive Inorganic Chemistry II: from Elements to Applications (Elsevier, 2013), p. 525Google Scholar
  12. 12.
    M.A. Pen, J.P. Gómez, J.L.G. Fierro, Appl. Catal. A 144, 7 (1996)CrossRefGoogle Scholar
  13. 13.
    H.D. Gesser, N.R. Hunter, C.B. Prakash, Chem. Rev. 85, 235 (1985)CrossRefGoogle Scholar
  14. 14.
    J. Shan, M. Li, L.F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Nature 551, 7682 (2017)CrossRefGoogle Scholar
  15. 15.
    S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36, 255 (2003)CrossRefGoogle Scholar
  16. 16.
    N.J. Gunsalus, M.M. Konnick, B.G. Hashiguchi, R.A. Periana, Isr. J. Chem. 54, 1467 (2014)CrossRefGoogle Scholar
  17. 17.
    K.T. Smith, S. Berritt, M. González-Moreiras, S. Ahn, M.R. Smith, M.H. Baik, D.J. Mindiola, Science 351, 1424 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    M.O. Ross, F. MacMillan, J.Z. Wang, A. Nisthal, T.J. Lawton, B.D. Olafson, S.L. Mayo, A.C. Rosenzweig, B.M. Hoffman, Science 364, 566 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    A.C. Rosenzweig, C.A. Frederick, S.J. Lippard, P. Nordlund, Nature 366, 537 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    R.L. Lieberman, A.C. Rosenzweig, Nature 434, 177 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    S.I. Chan, K.H.C. Chen, S.S.F. Yu, C.L. Chen, S.S.J. Kuo, Biochemistry 43, 4421 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    R.M. Barrer, Hydrothermal Chemistry of Zeolites (Academic Press, Cambridge, 1982)Google Scholar
  23. 23.
    International Zeolite Association. IZA Structure databaseGoogle Scholar
  24. 24.
    W. Loewenstein, Am. Mineral. 39, 92 (1954)Google Scholar
  25. 25.
    M.H. Mahyuddin, Y. Shiota, K. Yoshizawa, Catal. Sci. Technol. 9, 1744 (2019)CrossRefGoogle Scholar
  26. 26.
    L. Yang, Y. Aizhen, X. Qinhua, Appl. Catal. 67, 169 (1991)CrossRefGoogle Scholar
  27. 27.
    Y. Xu, P. Maddox, J.W. Couves, J. Chem. Soc. Faraday Trans. 86, 425 (1990)CrossRefGoogle Scholar
  28. 28.
    S. Moulai, R. Ghezini, A. Hasnaoui, A. Bengueddach, P.G. Weidler, Res. Chem. Intermed. 45, 1653 (2019)CrossRefGoogle Scholar
  29. 29.
    S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, M. Iwamoto, Appl. Catal. 70, L1 (1991)CrossRefGoogle Scholar
  30. 30.
    H. Yamaura, T. Akamatsu, Y. Abe, S. Yamaguchi, H. Yahiro, Res. Chem. Intermed. 37, 1157 (2011)CrossRefGoogle Scholar
  31. 31.
    S.T. King, Catal. Today 33, 173 (1997)CrossRefGoogle Scholar
  32. 32.
    F.S. Xiao, S. Zheng, J. Sun, R. Yu, S. Qiu, R. Xu, J. Catal. 176, 474 (1998)CrossRefGoogle Scholar
  33. 33.
    A.V. Kucherov, A.A. Slinkin, Zeolites 6, 175 (1986)CrossRefGoogle Scholar
  34. 34.
    S.T. King, Catal. Today 33, 173 (1997)CrossRefGoogle Scholar
  35. 35.
    H.V. Le, S. Parishan, A. Sagaltchik, C. Göbel, C. Schlesiger, W. Malzer, A. Trunschke, R. Schomäcker, A. Thomas, ACS Catal. 7, 1403 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Shwan, M. Skoglundh, L.F. Lundegaard, R.R. Tiruvalam, T.V.W. Janssens, A. Carlsson, P.N.R. Vennestrøm, ACS Catal. 5, 16 (2015)CrossRefGoogle Scholar
  37. 37.
    J.L. d’ltri, W.M. Sachtler, Catal. Lett. 15, 289 (1992)CrossRefGoogle Scholar
  38. 38.
    D. Li, L. Zeng, X. Li, X. Wang, H. Ma, S. Assabumrungrat, J. Gong, Appl. Catal. B 176, 532 (2015)CrossRefGoogle Scholar
  39. 39.
    J.S. Beck, S.B. McCullen, D.H. Olson, U.S. Patent 5403800 (1995)Google Scholar
  40. 40.
    L. Ren, L. Zhu, C. Yang, Y. Chen, Q. Sun, H. Zhang, C. Li, F. Nawaz, X. Meng, F.S. Xiao, Chem. Commun. 47, 9789 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Martínez-Franco, M. Moliner, C. Franch, A. Kustov, A. Corma, Appl. Catal. B 127, 273 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Martínez-Franco, M. Moliner, A. Corma, J. Catal. 319, 36 (2014)CrossRefGoogle Scholar
  43. 43.
    R. Martinez-Franco, M. Moliner, P. Concepcion, J.R. Thogersen, A. Corma, J. Catal. 314, 73 (2014)CrossRefGoogle Scholar
  44. 44.
    D.W. Fickel, F.L. Raul, J. Phys. Chem. C 114, 1633 (2009)CrossRefGoogle Scholar
  45. 45.
    G.L. Marra, A.N. Fitch, A. Zecchina, G. Ricchiardi, M. Salvalaggio, S. Bordiga, C. Lamberti, J. Phys. Chem. B 101, 10653 (1997)CrossRefGoogle Scholar
  46. 46.
    G.T. Palomino, S. Bordiga, A. Zecchina, G.L. Marra, C. Lamberti, J. Phys. Chem. B 104, 8641 (2000)CrossRefGoogle Scholar
  47. 47.
    P.K. Dutta, E.Z. Robert, Zeolites 8, 179 (1988)CrossRefGoogle Scholar
  48. 48.
    F. Giordanino, P.N. Vennestrøm, L.F. Lundegaard, F.N. Stappen, S. Mossin, P. Beato, S. Bordiga, C. Lamberti, Dalton Trans. 42, 12741 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya, M. Anpo, M. Che, J. Phys. Chem. 100, 397 (1996)CrossRefGoogle Scholar
  50. 50.
    J.H. Kwak, T. Varga, C.H.F. Peden, F. Gao, J.C. Hanson, J. Szanyi, J. Catal. 314, 83 (2014)CrossRefGoogle Scholar
  51. 51.
    M.H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt, J. Am. Chem. Soc. 127, 1394 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    P.J. Smeets, M.H. Groothaert, R.A. Schoonheydt, Catal. Today 110, 303 (2005)CrossRefGoogle Scholar
  53. 53.
    J.S. Woertink, P.J. Smeets, M.H. Groothaert, M.A. Vance, B.F. Sels, R.A. Schoonheydt, E.I. Solomon, Proc. Natl. Acad. Sci. USA 106, 18908 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    S. Grundner, M.A.C. Markovits, G. Li, M. Tromp, E.A. Pidko, E.J.M. Hensen, A. Jentys, M. Sanchez-Sanchez, J.A. Lercher, Nat. Commun. 6, 7546 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    A.R. Kulkarni, Z.J. Zhao, S. Siahrostami, J.K. Nørskov, F. Studt, ACS Catal. 6, 6531 (2016)CrossRefGoogle Scholar
  56. 56.
    D.K. Pappas, E. Borfecchia, M. Dyballa, I.A. Pankin, K.A. Lomachenko, A. Martini, M. Signorile, S. Teketel, B. Arstad, G. Berlier, C. Lamberti, S. Bordiga, U. Olsbye, K.P. Lillerud, S. Svelle, P. Beato, J. Am. Soc. Chem. 139, 14961 (2017)CrossRefGoogle Scholar
  57. 57.
    V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. van Bokhoven, Science 356, 523 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    V.L. Sushkevich, D. Palagin, J.A. van Bokhoven, Angew. Chem. Int. Ed. 57, 8906 (2018)CrossRefGoogle Scholar
  59. 59.
    G. Brezicki, J.D. Kammert, T.B. Gunnoe, C. Paolucci, R.J. Davis, ACS Catal. 9, 5308 (2019)CrossRefGoogle Scholar
  60. 60.
    D. Palagin, A.J. Knorpp, A.B. Pinar, M. Ranocchiari, J.A. van Bokhoven, Nanoscale 9, 1144 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    M.A. Newton, A.J. Knorpp, A.B. Pinar, V.L. Sushkevich, D. Palagin, J.A. van Bokhoven, J. Am. Chem. Soc. 140, 10090 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    B. Ipek, R.F. Lobo, Chem. Commun. 52, 13401 (2016)CrossRefGoogle Scholar
  63. 63.
    Y. Román-Leshkov, K. Narsimhan, US Patent 0267616A1 (2017)Google Scholar
  64. 64.
    K. Narsimhan, K. Iyoki, K. Dinh, Román-Leshkov Y. ACS Cent. Sci. 2, 424 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    K.T. Dinh, M.M. Sullivan, K. Narsimhan, P. Serna, R.J. Meyer, M. Dinca, Y. Roman-Leshkov, J. Am. Chem. Soc. 141, 11641 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    J. Xu, R.D. Armstrong, G. Shaw, N.F. Dummer, S.J. Freakley, S.H. Taylor, G.J. Hutchings, Catal. Today 270, 93 (2016)CrossRefGoogle Scholar
  67. 67.
    A.J. Knorpp, A.B. Pinar, M.A. Newton, V.L. Sushkevich, J.A. van Bokhoven, ChemCatChem 10, 5593 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and TechnologyNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations