Advertisement

Synthesis of bismuth oxyiodide (BiOI) by means of microwaves in glycerol with high photocatalytic activity for the elimination of NOx and SO2

  • 216 Accesses

Abstract

A facile microwave route was successfully developed to synthesize BiOI in glycerol as a medium of reaction. The temperature and time of synthesis were selected as the critical experimental variables to rule the physicochemical properties of the samples prepared. The products were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy, adsorption–desorption N2 isotherms, diffuse reflectance spectroscopy, scanning electron microscopy, X-ray electron spectroscopy and thermogravimetric/differential scanning calorimetry (TGA/DSC). The photocatalytic activity of BiOI samples was tested in the oxidation reactions of nitric oxide (NO) and sulfur dioxide (SO2) in gaseous phase under visible light radiation. The photocatalysts with the highest activity were the samples prepared by microwave irradiation at 135 °C for 20–34 min and were able to remove 97.8% of NO2 and 85.2% of SO2. The analysis by XRD revealed aspects of the samples that improved its photocatalytic activity, such as the preferential crystalline orientation in (110) BiOI planes, as well as the presence of the secondary crystalline phases Bi, Bi2O2.5 and Bi4O5I2. The use of chemical scavengers revealed that the ion superoxide (O2) and photogenerated electrons (e) were the predominant active species in the mechanism of the NO oxidation reaction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    C.D. Koolen, G. Rothenberg, Chemsuschem 12, 164 (2019)

  2. 2.

    M.Y. Nava, A. Martínez-de la Cruz, Mat. Sci. Semicon. Proc. 81, 94 (2018)

  3. 3.

    C. Sun, N. Zhao, Z. Zhuang, H. Wang, Y. Liu, X. Weng, Z. Wu, J. Hazard. Mater. 274, 376 (2014)

  4. 4.

    Y. Zhao, T. Guo, Z. Chen, Y. Du, Chem. Eng. J. 160, 42 (2010)

  5. 5.

    J. Poyatos, M. Muñio, M. Almecija, J. Torres, E. Hontoria, F. Osorio, Water Air Soil Poll. 205, 187 (2010)

  6. 6.

    X. Xiao, W. Zhang, RSC Adv. 1, 1099 (2011)

  7. 7.

    L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci. NANO 1, 90 (2014)

  8. 8.

    J. Xiong, G. Cheng, F. Qin, R. Wang, H. Sun, R. Chen, Chem. Eng. J. 220, 228 (2013)

  9. 9.

    N.C.T. Martins, J. Ângelo, A.V. Girão, T. Trindade, L. Andrade, A. Mendes, Appl. Catal. B-Environ. 193, 67 (2016)

  10. 10.

    H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009 (2014)

  11. 11.

    F. Rao, G. Zhu, M. Hojamberdiev, W. Zhang, S. Li, J. Gao, F. Zhang, Y. Huang, Y. Huang, J. Phys. Chem. C 123, 16268 (2019)

  12. 12.

    C. Liu, X. Wang, Dalton Trans. 45, 7720 (2016)

  13. 13.

    G. Zhu, S. Li, J. Gao, F. Zhang, C. Liu, Q. Wang, M. Hojamberdiev, Appl. Surf. Sci. 493, 913 (2019)

  14. 14.

    G. Dong, W. Ho, L. Zhang, Appl. Catal. B Environ. 168–169, 490 (2015)

  15. 15.

    X. Wu, K. Zhang, G. Zhang, S. Yin, Chem. Eng. J. 325, 59 (2017)

  16. 16.

    Y. Jia, S. Li, J. Gao, G. Zhu, F. Zhang, X. Shi, Y. Huang, C. Liu, Appl. Catal. B 240, 241 (2019)

  17. 17.

    G. Zhu, M. Hojamberdiev, S. Zhang, S.T.U. Din, W. Yang, Appl. Surf. Sci. 467–468, 968 (2019)

  18. 18.

    S. Shenawi-Khalil, V. Uvarov, S. Fronton, I. Popov, Y. Sasson, Appl. Catal. B Environ. 117–118, 148 (2012)

  19. 19.

    M. Ou, F. Dong, W. Zhang, Z. Wu, Chem. Eng. J. 255, 650 (2014)

  20. 20.

    H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces. 7, 482 (2015)

  21. 21.

    S. Tu, M. Lu, X. Xiao, C. Zheng, H. Zhong, X. Zuo, J. Nan, RSC Adv. 6, 44552 (2016)

  22. 22.

    Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, Chem. Eng. J. 304, 454 (2016)

  23. 23.

    W. Zhang, Q. Zhang, F. Dong, Ind. Eng. Chem. Res. 52, 6740 (2013)

  24. 24.

    A.S. Maybodi, S.M. Pourali, Micropor. Mesopor. Mat. 167, 127 (2013)

  25. 25.

    X. Xiao, R. Hao, X. Zuo, J. Nan, L. Li, W. Zhang, Chem. Eng. J. 209, 293 (2012)

  26. 26.

    J.M. Montoya, A. Martínez-de la Cruz, E. López-Cuellar, Res. Chem. Intermed. 43, 2545 (2017)

  27. 27.

    M. Azadi, A. Habibi, J. Iran. Chem. Soc. 12, 909 (2015)

  28. 28.

    J. Hu, S. Weng, Z. Zheng, Z. Pei, M. Huang, P. Liu, J. Hazard. Mater. 264, 293 (2014)

  29. 29.

    Y.J. Zhu, F. Chen, Chem. Rev. 114, 6462 (2014)

  30. 30.

    X. Wang, H. Chen, H. Li, G. Mailhot, W. Dong, J. Colloid Interface Sci. 478, 1 (2016)

  31. 31.

    Q.C. Liu, D.K. Ma, Y.Y. Hu, Y.W. Zheng, S.M. Huang, ACS Appl. Mater. Interfaces. 5, 11927 (2013)

  32. 32.

    M.Y. Nava Núñez, A. Martínez-de la Cruz, E. López-Cuéllar, Res. Chem. Intermed. 45, 1475 (2019)

  33. 33.

    X. Xiao, Y. Lin, B. Pan, W. Fan, Y. Huang, Inorg. Chem. Commun. 93, 65 (2018)

  34. 34.

    W.W. Lee, C.S. Lu, C.W. Chuang, Y.J. Chen, J.Y. Fu, C.W. Siao, C.C. Chen, RSC Adv. 5, 23450 (2015)

  35. 35.

    L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, P.C.T. Au, Ind. Eng. Chem. Res. 51, 6760 (2012)

  36. 36.

    S. Luo, J. Xu, Z. Li, C. Liu, J. Chen, X. Min, M. Fang, Z. Huang, Nanoscale 9, 15484 (2017)

  37. 37.

    J.B. Condon, Surface Area and Porosity Determinations by Physisorption (Elsevier, Amsterdam, 2006), p. 8

  38. 38.

    X. Zhang, Z. Ai, F. Jia, L. Zhang, J. Phys. Chem. C 112, 747 (2008)

  39. 39.

    X. Xiao, C. Xing, G. He, X. Zuo, J. Nan, L. Wang, Appl. Catal. B-Environ. 148–149, 154 (2014)

  40. 40.

    K. Ren, K. Zhang, J. Liu, H. Luo, Y. Huang, XYu. Cryst, Eng. Comm. 14, 4384 (2012)

  41. 41.

    C. Chang, L. Zhu, Y. Fu, X. Chu, Chem. Eng. J. 233, 305 (2013)

  42. 42.

    H. Huang, K. Xiao, T. Zhang, F. Dong, Y. Zhang, Appl. Catal. B-Environ. 203, 879 (2017)

Download references

Acknowledgements

We wish to thank to the CONACYT (Mexico) for its invaluable support through the Project 167018. We want to express our gratitude to L.G. Silva Vidaurri and A. Toxqui Terán (CIMAV-NL) for the assistance in DRX and XPS experiments.

Author information

Correspondence to A. Martínez-de la Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2129 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reyna-Cavazos, K.A., la Cruz, A.M., Longoria Rodríguez, F.E. et al. Synthesis of bismuth oxyiodide (BiOI) by means of microwaves in glycerol with high photocatalytic activity for the elimination of NOx and SO2. Res Chem Intermed 46, 923–941 (2020) doi:10.1007/s11164-019-03998-8

Download citation

Keywords

  • BiOI
  • Glycerol
  • Photocatalysis
  • NOx
  • SO2