Advertisement

Synthesis of magnetic CuFe2O4 self-assembled hollow nanospheres and its application for degrading methylene blue

  • 101 Accesses

  • 1 Citations

Abstract

Using ethylene glycol as solvent and PVP as structure-directing agent, CuFe2O4 nanospheres were successfully prepared by solvothermal method. The crystal structure, morphology, magnetic properties, and pore-size distribution of samples were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope, VSM, and BET, respectively. The effects of various preparation factors on the crystal form and morphology of the obtained samples were systematically discussed. The result exhibited that the self-assembled hollow nanospheres with good crystal form and morphology are obtained under the conditions of 0.50 g PVP, 9 mmol NaAc, reaction temperature of 180 °C, and reaction time of 24 h. The catalytic activity of CuFe2O4 hollow nanospheres was evaluated by the degradation of methylene blue (MB) and the possible degradation mechanism and pathway of MB in the CuFe2O4/H2O2 photo-Fenton-like system were proposed. In addition, the properties of CuFe2O4 particles prepared by different methods were compared and analyzed. The sample synthesized by solvothermal method has a large specific surface area and excellent magnetic properties. Furthermore, the increase in the photoelectric response and the conductivity are beneficial to the improvement of catalytic performance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    X. Shi, A. Tian, J. You, H. Yang, Y. Yang, X. Xue, J. Hazard. Mater. 353, 182 (2018)

  2. 2.

    Q. Qin, Y. Liu, X. Li, T. Sun, Y. Xu, RSC Adv. 8, 1071 (2018)

  3. 3.

    M. Munoz, G. Pliego, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Chemosphere 109, 34 (2014)

  4. 4.

    H. Zangeneh, A.A.L. Zinatizadeh, M. Feizy, J. Ind. Eng. Chem. 20, 1453 (2014)

  5. 5.

    W. Wan, Y. Zhang, R. Ji, B. Wang, F. He, ACS Omega 2, 6104 (2017)

  6. 6.

    G. Pliego, J.A. Zazo, J.A. Casas, J.J. Rodriguez, J. Hazard. Mater. 252–253, 180 (2013)

  7. 7.

    S. Bae, D. Kim, W. Lee, Appl. Catal. B Environ. 134, 93 (2013)

  8. 8.

    X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Sci. Rep. 5, 10632 (2015)

  9. 9.

    W. Zhu, J. Zhang, H. Li, Y. Chao, W. Jiang, S. Yin, H. Liu, RSC Adv. 2, 658 (2011)

  10. 10.

    J. Zhang, W. Zhu, H. Li, W. Jiang, Y. Jiang, W. Huang, Y. Yan, Green Chem. 11, 1801 (2009)

  11. 11.

    S. Guo, G. Zhang, RSC Adv. 6, 2537 (2016)

  12. 12.

    C. Liu, P. Zhang, C. Zeng, G. Zeng, G. Xu, Y. Huang, J. Environ. Sci. 28, 37 (2015)

  13. 13.

    R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, Appl. Catal. B Environ. 187, 428 (2016)

  14. 14.

    Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Yang, Y. Ren, L. Zuo, Bioresour. Technol. 100, 4139 (2009)

  15. 15.

    N. Panda, H. Sahoo, S. Mohapatra, J. Hazard. Mater. 185, 359 (2011)

  16. 16.

    X. Li, Y. Huang, C. Li, J. Shen, Y. Deng, Chem. Eng. J. 260, 28 (2015)

  17. 17.

    M. Ranjani, D.J. Yoo, G.G. Kumar, J. Membr. Sci. 555, 497 (2018)

  18. 18.

    R. Sharma, V. Kumar, S. Bansal, S. Singhala, J. Mol. Catal. A Chem. 402, 53 (2015)

  19. 19.

    C. Karthikeyan, K. Ramachandran, S. Sheet, D.J. Yoo, Y.S. Lee, Y. Satish Kumar, A.R. Kim, G.G. Kumar, ACS Sustain. Chem. Eng. 5, 4897 (2017)

  20. 20.

    M. Vinothkannan, C. Karthikeyan, G.G. Kumar, A.R. Kim, D.J. Yoo, Spectrochim. Acta Part A 136, 256 (2015)

  21. 21.

    J. Salamon, Y. Sathishkumar, K. Ramachandran, Y.S. Lee, D.J. Yoo, A.R. Kim, G.G. Kumar, Biosens. Bioelectron. 64, 269 (2015)

  22. 22.

    G.G. Kumar, C.J. Kirubaharan, D.J. Yoo, A.R. Kim, Int. J. Hydrogen Energy 41, 13208 (2016)

  23. 23.

    G.G. kumar, G. Amala, and S.M. Gowtham, RSC Adv. 7, 36949 (2017).

  24. 24.

    J. Kang, H. Zhang, X. Duan, H. Sun, X. Tan, S. Liu, S. Wang, Chem. Eng. J. 362, 251 (2019)

  25. 25.

    T.R. Kumar, G.G. Kumar, A. Manthiram, Adv. Energy Mater. 9, 1803238 (2019)

  26. 26.

    M. Ranjani, Y. Sathishkumar, Y.S. Lee, D.J. Yoo, A.R. Kim, G.G. Kumar, RSC Adv. 5, 57804 (2015)

  27. 27.

    D.H.K. Reddy, Y.-S. Yun, Coord. Chem. Rev. 315, 90 (2016)

  28. 28.

    D. Miao, J. Peng, M. Wang, S. Shao, L. Wang, S. Gao, Chem. Eng. J. 346, 1 (2018)

  29. 29.

    M. Zhu, D. Meng, C. Wang, G. Diao, ACS Appl. Mater. Interfaces 5, 6030 (2013)

  30. 30.

    J. Jung-König, C. Feldmann, Z. Anorg. Allg. Chem. 643, 1 (2017)

  31. 31.

    Z. Li, X. Lai, H. Wang, D. Mao, C. Xing, D. Wang, J. Phys. Chem. C 113, 2792 (2009)

  32. 32.

    Y. Song, P. Shao, J. Tian, W. Shi, S. Gao, J. Qi, X. Yan, F. Cui, Ceram. Int. 42, 2074 (2016)

  33. 33.

    X. Zhang, Y. Zhang, L. Gao, H. Yu, Y. Wei, J. Colloid Interface Sci. 452, 24 (2015)

  34. 34.

    S. Yang, C. Xu, S. Hu, W.S. Wang, J. Yu, L. Zhen, Bull. Korean Chem. Soc. 37, 522 (2016)

  35. 35.

    S.M. Lam, M.W. Kee, J.C. Sin, Mater. Chem. Phys. 212, 35 (2018)

  36. 36.

    J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Lv, Y. Ren, Z. Fan, Mater. Chem. Phys. 223, 758 (2019)

  37. 37.

    T.L. Lai, C.W. Lai, K.M. Lee, S.W. Chook, C.K. Yang, S.H. Chong, J.C. Juan, J. Alloys Compd. 801, 502 (2019)

  38. 38.

    P. Chen, X. Xing, H. Xie, Q. Sheng, H. Qu, Chem. Phys. Lett. 660, 176 (2016)

  39. 39.

    S. Kameoka, T. Tanabe, A.P. Tsai, Appl. Catal. A Gen. 375, 163 (2010)

  40. 40.

    B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Dalton Trans. 43, 7930 (2014)

  41. 41.

    K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 44, 17883 (2015)

  42. 42.

    G.I. Shakibaei, R. Ghahremanzadeh, A. Bazgir, Monatsh. Chem. 145, 1009 (2014)

  43. 43.

    Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, Mater. Lett. 61, 3174 (2007)

  44. 44.

    H. Wang, C. Yang, L. Wang, D. Kong, Y. Zhang, Z. Yang, Chem. Commun. 47, 4439 (2011)

  45. 45.

    G. Zhang, Y. Gao, Y. Zhang, Y. Guo, Environ. Sci. Technol. 44, 6384 (2010)

  46. 46.

    H.P. Jing, C.C. Wang, Y.W. Zhang, P. Wang, R. Li, RSC Adv. 4, 54454 (2014)

  47. 47.

    G.J. Rani, M.A.J. Rajan, G.G. Kumar, Res. Chem. Intermed. 43, 2669 (2017)

  48. 48.

    Y. Feng, C. Liao, K. Shih, Chemosphere 154, 573 (2016)

  49. 49.

    L. Wolski, M. Ziolek, Appl. Catal. B Environ. 224, 634 (2018)

  50. 50.

    T.B. Nguyen, R.A. Doong, C.P. Huang, C.W. Chen, C.D. Dong, Sci. Total Environ. 675, 531 (2019)

  51. 51.

    C.L. Lee, L.C. Kuo, Y.C. Huang, Y.W. Yen, Electrochem. Commun. 8, 697 (2006)

  52. 52.

    M. Zhu, D. Meng, C. Wang, G. Diao, ACS Appl. Mater. Inter. 5, 6030 (2013)

  53. 53.

    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004)

  54. 54.

    A.B. Ghomi, V. Ashayeri, Iran. J. Catal. 2, 135 (2012)

  55. 55.

    Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Ind. Eng. Chem. Res. 51, 11700 (2012)

  56. 56.

    Y. Shen, Y. Wu, H. Xu, J. Fu, X. Li, Q. Zhao, Y. Hou, Mater. Res. Bull. 48, 4216 (2013)

Download references

Acknowledgements

The work was financially supported by the Fundamental Research Funds for the Universities of Gansu Province and Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education.

Author information

Correspondence to Xiaojun Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Xu, Y., Wang, K. et al. Synthesis of magnetic CuFe2O4 self-assembled hollow nanospheres and its application for degrading methylene blue. Res Chem Intermed 46, 853–869 (2020). https://doi.org/10.1007/s11164-019-03994-y

Download citation

Keywords

  • CuFe2O4
  • Solvothermal method
  • Photoelectric response
  • Catalytic performance