Research on Chemical Intermediates

, Volume 46, Issue 1, pp 783–802 | Cite as

Synthesis of polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation

  • Vijay B. Khajone
  • Pundlik R. BhagatEmail author


A polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety (PSBAZnPP), has been synthesized and characterized by Fourier transform nuclear magnetic resonance (FT-NMR) and Fourier transform infrared spectroscopy (FTIR). The thermal stability was determined by thermogravimetric analysis (TGA), and surface morphology and elemental composition were investigated by scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDAX). The heterogeneous PSBAZnPP showed high efficacy as a photocatalyst for degradation of azo dyes, such as methyl red (MR), methyl orange (MO) and Congo red (CR), in the presence of visible-light irradiation at ambient condition using atmospheric air/H2O2. The concentration of the dyes was measured by UV–visible spectroscopy, and the degradation of the dyes was confirmed by GC–MS analysis. Further decolorization and degradation of MO were confirmed by using ultra-high-pressure liquid chromatography (UPLC). The optimum degradation was achieved by adding 10 mg catalyst for all azo dyes for 60 min in the presence of air. The effect of scavengers was studied to indicate the most active species generated during photocatalysis. PSBAZnPP furnished a good response toward the photodegradation of MR, MO and CR under optimized conditions. Finally, the mechanism of photocatalytic degradation process was suggested. Relevant active species produced in the PSBAZnPP/H2O2 or PSBAZnPP/air system under visible light were recognized by using different types of scavengers, viz. EDTA, p-benzoquinone (PBQ), terephthalic acid (TPA), sodium azide and sodium nitrate, for determination of formation of holes, \({\text{O}}_{2}^{ \cdot }\), \({\text{OH}}^{ \cdot }\), \({}^{1}{\text{O}}_{2}\) and an aqueous electron (e), respectively. The comparative acidity of the synthesized PSBAZnPP catalyst was measured using UV–Vis and then equated to relations of the Hammett value (H0). The efficiency of catalyst correlates with a considerable proton level required for degradation of organic dyes.

Graphic abstract


Zinc–porphyrin Benzimidazolium Azo dye degradation Photocatalyst Heterogeneous Brønsted acid Visible light Hammett acidity 



The authors gratefully acknowledge VIT-SIF SAS and the SEM Facility at SBST VIT, Vellore, for instrumentation facilities. The authors also thank VIT for providing ‘VIT SEED GRANT’ for carrying out this research work. We kindly acknowledge VIT Management, Department of Chemistry (SAS), “Smart Materials Laboratory for Biosensing and Catalysis.” We would also like to extend our thanks to Mr. Sagar Krushnarao Datir for his valuable advice and suggestions.

Supplementary material

11164_2019_3990_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4639 kb)


  1. 1.
    Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding, D. Chen, Y. Li, W. Tu, D. Cao, Z. Yu, Z. Zou, Chem. Eng. J. 275, 8 (2015)Google Scholar
  2. 2.
    S. Xu, Y. Lv, X. Zeng, D. Cao, Chem. Eng. J. 323, 502 (2017)Google Scholar
  3. 3.
    Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Chem. Eng. J. 337, 351 (2018)Google Scholar
  4. 4.
    Y. Wei, Y. Zhu, Y. Jiang, Chem. Eng. J. 356, 915 (2019)Google Scholar
  5. 5.
    S. Pirillo, E.H. Rueda, M.L. Ferreira, Chem. Eng. J. 204–205, 65 (2012)Google Scholar
  6. 6.
    M. Gmurek, J.S. Miller, S. Ledakowicz, Chem. Eng. J. 210, 417 (2012)Google Scholar
  7. 7.
    J. Zhang, M. Feng, Y. Jiang, M. Hu, S. Li, Q. Zhai, Chem. Eng. J. 191, 236 (2012)Google Scholar
  8. 8.
    H. Ghafuri, Z. Movahedinia, R. Rahimi, H.R.E. Zand, RSC Adv. 5, 60172 (2015)Google Scholar
  9. 9.
    R.V. Kandisa, K.V.N. Saibaba, J. Bioremediation Biodegrad. 07 (2016)Google Scholar
  10. 10.
    J.M. Dąbrowski, B. Pucelik, M.M. Pereira, L.G. Arnaut, W. MacYk, G. Stochel, RSC Adv. 5, 93252 (2015)Google Scholar
  11. 11.
    H. Xu, J.X. Xiang, P. Wu, Y.F. Lu, S. Zhang, Z.Y. Xie, Z.Z. Gu, RSC Adv. 6, 45617 (2016)Google Scholar
  12. 12.
    M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, New J. Chem. 39, 8381 (2015)Google Scholar
  13. 13.
    J.H. Castillo-Ledezma, J.L.S. Salas, A. López-Malo, E.R. Bandala, Eur. Food Res. Technol. 233, 825 (2011)Google Scholar
  14. 14.
    G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, J. Am. Chem. Soc. 133, 3114 (2011)PubMedGoogle Scholar
  15. 15.
    D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6, 186 (2005)Google Scholar
  16. 16.
    Y.I. Choi, S. Lee, S.K. Kim, Y. Il Kim, D.W. Cho, M.M. Khan, Y. Sohn, J. Alloys Compd. 675, 46 (2016)Google Scholar
  17. 17.
    M. Fujitsuka, T. Majima, J. Photochem. Photobiol. C Photochem. Rev. 35, 38 (2018)Google Scholar
  18. 18.
    M. Silva, M.E. Azenha, M.M. Pereira, H.D. Burrows, M. Sarakha, C. Forano, M.F. Ribeiro, A. Fernandes, Appl. Catal. B Environ. 100, 1 (2010)Google Scholar
  19. 19.
    Q. Wu, X. Hao, X. Feng, Y. Wang, Y. Li, E. Wang, X. Zhu, X. Pan, Inorg. Chem. Commun. 22, 137 (2012)Google Scholar
  20. 20.
    M. Cheng, W. Ma, C. Chen, J. Yao, J. Zhao, Appl. Catal. B Environ. 65, 217 (2006)Google Scholar
  21. 21.
    B. Li, L. Shao, B. Zhang, R. Wang, M. Zhu, X. Gu, J. Colloid Interface Sci. 505, 653 (2017)PubMedGoogle Scholar
  22. 22.
    B. Li, Y. Hao, X. Shao, H. Tang, T. Wang, J. Zhu, S. Yan, J. Catal. 329, 368 (2015)Google Scholar
  23. 23.
    B. Li, R. Wang, X. Shao, L. Shaob, B. Zhang, Inorg. Chem. Front. 4, 2088 (2017)Google Scholar
  24. 24.
    B. Li, Y. Hao, B. Zhang, X. Shao, L. Hu, Applied Catal. A Gen. 531, 1 (2017)Google Scholar
  25. 25.
    Y. Xiao, X. Tao, G. Qiu, Z. Dai, P. Gao, B. Li, J. Colloid Interface Sci. 550, 99 (2019)PubMedGoogle Scholar
  26. 26.
    M. Rabbani, M. Heidari-Golafzani, R. Rahimi, Mater. Chem. Phys. 179, 35 (2016)Google Scholar
  27. 27.
    Z. Zhang, H. Liu, J. Xu, N. Zhang, Photochem. Photobiol. Sci. 16, 1194 (2017)PubMedGoogle Scholar
  28. 28.
    S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan, Appl. Catal. B Environ. 119–120, 156 (2012)Google Scholar
  29. 29.
    H. Wang, D. Zhou, S. Shen, J. Wan, X. Zheng, L. Yu, D.L. Phillips, RSC Adv. 4, 28978 (2014)Google Scholar
  30. 30.
    Y. Li, Q. Duan, H. Wang, B. Gao, N. Qiu, Y. Li, J. Photochem. Photobiol. A Chem. 356, 370 (2018)Google Scholar
  31. 31.
    N. Qiu, Y. Li, S. Han, G. Cui, T. Satoh, T. Kakuchi, Q. Duan, J. Photochem. Photobiol. A Chem. 283, 38 (2014)Google Scholar
  32. 32.
    J.H. Cai, J.W. Huang, H.C. Yu, L.N. Ji, J. Taiwan Inst. Chem. Eng. 43, 958 (2012)Google Scholar
  33. 33.
    A.G. Khiratkar, P.N. Muskawar, P.R. Bhagat, RSC Adv. 6, 105087 (2016)Google Scholar
  34. 34.
    K.R. Balinge, A.G. Khiratkar, P.R. Bhagat, J. Mol. Liq. 242, 1085 (2017)Google Scholar
  35. 35.
    K.R. Balinge, A.G. Khiratkar, P.N. Muskawar, K. Thenmozhi, P.R. Bhagat, Res. Chem. Intermed. 44, 2075 (2018)Google Scholar
  36. 36.
    P.N. Muskawar, S. Senthil Kumar, P.R. Bhagat, J. Mol. Catal. A Chem. 380, 112 (2013)Google Scholar
  37. 37.
    R. Rahimi, M.M. Moghaddas, S. Zargari, J. Sol–Gel. Sci. Technol. 65, 420 (2013)Google Scholar
  38. 38.
    H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J.P. Giesy, J. Hazard. Mater. 369, 494 (2019)PubMedGoogle Scholar
  39. 39.
    K.S. Min, R.S. Kumar, J.H. Lee, K.S. Kim, S.G. Lee, Y.A. Son, Dye. Pigment. 160, 37 (2019)Google Scholar
  40. 40.
    Q. Li, T. Zhao, M. Li, W. Li, B. Yang, D. Qin, K. Lv, X. Wang, L. Wu, X. Wu, J. Sun, Appl. Catal. B Environ. 249, 1 (2019)Google Scholar
  41. 41.
    Z. Feng, J. Yu, J. Kong, T. Wang, Chem. Eng. J. 294, 236 (2016)Google Scholar
  42. 42.
    P. Kharazi, R. Rahimi, M. Rabbani, Mater. Res. Bull. 103, 133 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Advanced ScienceVellore Institute of TechnologyVelloreIndia

Personalised recommendations