Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 755–768 | Cite as

The removal of methylene blue as a remedy of dye-based marine pollution: a photocatalytic perspective

  • Yasar N. KavilEmail author
  • Yasser A. Shaban
  • Saeed Saad Alelyani
  • Radwan Al-Farawati
  • Mohammad I. Orif
  • Mohammed A. Ghandourah
  • Mark Schmidt
  • Adnan J. Turki
  • Mousa Zobidi
Article
  • 84 Downloads

Abstract

The effluents containing the discarded water from the textile industry are graded as one of the foremost pollutants in all industrial sectors. The wide varieties of dyes, which is susceptible to the possibility of carcinogens or mutagens, and it will be harmful to entire ecosystem. The titanium dioxide, one of the foremost heterogeneous semiconductor photocatalysts, has been acknowledged for the wide applications in hydrogen production from water splitting and degradation of organic and inorganic pollutants since last few decades. The present work is successively advanced for the removal of methylene blue from the seawater. The work was carried under natural sunlight with the presence of C/TiO2 and Cu–C/TiO2. The photocatalytic removal experiment was carried out with different catalyst dosages (0.25–1.25 g/L), different initial concentrations from 5 to 30 µM and at different pH values (3–9). The highest removal rate was found at the optimum condition of pH 8 and 1 g/L. At the optimum condition, 100% efficiency was achieved under natural sunlight. The kinetic studies reveal the pseudo-first-order kinetics and half-life time comparison proves the enhanced visible light harvesting of Cu–C/TiO2.

Keywords

Methylene blue Seawater Photocatalytic removal Carbon modification 

Notes

Acknowledgements

The authors are grateful to the Department of Marine Chemistry for providing the laboratory facility. The Jeddah Transect Project, a collaboration between King Abdulaziz University and GEOMAR Helmholtz Center for Ocean Research, was funded by King Abdulaziz University (KAU) Jeddah, Saudi Arabia, under Grant no. T-065/430-DSR. The authors acknowledge with thanks KAU technical and financial support.

Supplementary material

11164_2019_3988_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1949 kb)

References

  1. 1.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B-Environ. 49(1), 1 (2004)Google Scholar
  2. 2.
    J.H. Deng, X.R. Zhang, G.M. Zeng, J.L. Gong, Q.Y. Niu, J. Liang, Chem. Eng. J. 226, 189 (2013)Google Scholar
  3. 3.
    Y. Xu, G. Long, L. Huang, Y. Huang, X. Wan, Y. Ma, Y. Chen, Carbon 48(11), 3308 (2010)Google Scholar
  4. 4.
    X. Wang, L. Zhi, K. Müllen, Nano Lett. 8(1), 323 (2008)PubMedGoogle Scholar
  5. 5.
    A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4(70), 37003 (2014)Google Scholar
  6. 6.
    A. Cassano, R. Molinari, M. Romano, E. Drioli, J. Membrane Sci. 181(1), 111 (2001)Google Scholar
  7. 7.
    G. Crini, Bioresour. Technol. 97(9), 1061 (2006)PubMedGoogle Scholar
  8. 8.
    M. Perez-Urquiza, J.L. Beltran, J. Chromatogr. A 898(2), 271 (2000)PubMedGoogle Scholar
  9. 9.
    F. Hueber-Becker, G.J. Nohynek, E.K. Dufour, W.J. Meuling, A.T.H. de Bie, H. Toutain, H.M. Bolt, Food Chem. Toxicol. 45(1), 160 (2007)PubMedGoogle Scholar
  10. 10.
    D. Wróbel, A. Boguta, R.M. Ion, J. Photoch. Photobio. A Chem. 138(1), 7 (2001)Google Scholar
  11. 11.
    R. Kant, Nat. Sci. 4(1), 22 (2012)Google Scholar
  12. 12.
    M.A. Rauf, S.S. Ashraf, Chem. Eng. J. 151(1–3), 10 (2009)Google Scholar
  13. 13.
    M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Desalination 252(1–3), 53 (2010)Google Scholar
  14. 14.
    K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G.E. Beheir, M. Refaat, Water Res. 44(5), 1449 (2010)PubMedGoogle Scholar
  15. 15.
    S. Zodi, O. Potier, F. Lapicque, J.P. Leclerc, Desalination 261(1–2), 186 (2010)Google Scholar
  16. 16.
    N. Serpone, Res. Chem. Intermediat. 20(9), 953 (1994)Google Scholar
  17. 17.
    K.I. Zamaraev, M.I. Khramov, V.N. Parmon, Catal. Rev. Sci. Eng. 36(4), 617 (1994)Google Scholar
  18. 18.
    C. Liang, C. Liu, F. Li, F. Wu, Chem. Eng. J. 147(2–3), 219 (2009)Google Scholar
  19. 19.
    C.A. Ferreira, S.C. Domenech, P.C. Lacaze, J. Appl. Electrochem. 31(1), 49 (2001)Google Scholar
  20. 20.
    M. Saquib, M. Muneer, Dyes Pigm. 56(1), 37 (2003)Google Scholar
  21. 21.
    K. Azad, P. Gajanan, Chem. Sci. J. 8, 164 (2017)Google Scholar
  22. 22.
    H. Jia, Z. Zheng, H. Zhao, L. Zhang, Z. Zou, Mater. Res. Bull. 44(6), 1312 (2009)Google Scholar
  23. 23.
    Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.K. Al Farawati, M.I. Al Zobidi, S.U. Khan, Appl. Surf. Sci. 365, 108 (2016)Google Scholar
  24. 24.
    Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.K. Al Farawati, M.I. Al Zobidi, Chemosphere 91(3), 307 (2013)PubMedGoogle Scholar
  25. 25.
    Y.A. Shaban, A.A. El Maradny, R.K. Al Farawati, J. Photoch. Photobio. A Chem. 328, 114 (2016)Google Scholar
  26. 26.
    H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, M. Schiavello, Res. Chem. Intermediat. 20(8), 815 (1994)Google Scholar
  27. 27.
    K. Adachi, K. Ohta, T. Mizuno, Sol. Energy 53(2), 187 (1994)Google Scholar
  28. 28.
    Y.N. Kavil, Y.A. Shaban, R.K. Al Farawati, M.I. Orif, M. Zobidi, S.U. Khan, J. Photoch. Photobiol. A Chem. 347, 244 (2017)Google Scholar
  29. 29.
    Y.N. Kavil, Y.A. Shaban, R.K. Al Farawati, M.I. Orif, M. Zobidi, S.U. Khan, Water. Air. Soil. Poll. 229(7), 236 (2018)Google Scholar
  30. 30.
    Y.N. Kavil, Y.A. Shaban, M.I. Orif, R. Al-Farawati, M. Zobidi, S.U. Khan, Open Chem. 16(1), 1089 (2018)Google Scholar
  31. 31.
    M.A. Henderson, Surf. Sci. Rep. 66(6–7), 185 (2011)Google Scholar
  32. 32.
    Y.S. Lee, S.J. Kim, P. Venkateswaran, J.S. Jang, H. Kim, J.G. Kim, Carbon Lett. 9(2), 131 (2008)Google Scholar
  33. 33.
    S.U. Khan, M. Al-Shahry, W.B. Ingler, Science 297(5590), 2243 (2002)PubMedGoogle Scholar
  34. 34.
    N.M. Makwana, C.J. Tighe, R.I. Gruar, P.F. McMillan, J.A. Darr, Mat. Sci. Semicon. Proc. 42, 131 (2016)Google Scholar
  35. 35.
    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170(2–3), 520 (2009)PubMedGoogle Scholar
  36. 36.
    A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63(12), 515 (2008)Google Scholar
  37. 37.
    Y.A. Shaban, H.M. Fallata, Res. Chem. Intermediat. 45(5), 2529 (2019)Google Scholar
  38. 38.
    Y.A. Shaban, Environ. Pollut. 3(1), 41 (2014)Google Scholar
  39. 39.
    A. Kumar, G. Pandey, Desalin. Water. Treat. 71, 406 (2017)Google Scholar
  40. 40.
    R. Wang, D. Ren, S. Xia, Y. Zhang, J. Zhao, J. Hazard. Mater. 169(1–3), 926 (2009)PubMedGoogle Scholar
  41. 41.
    H.M. Coleman, V. Vimonses, G. Leslie, R. Amal, J. Hazard. Mater. 146(3), 496 (2007)PubMedGoogle Scholar
  42. 42.
    S. Merabet, A. Bouzaza, D. Wolbert, J. Hazard. Mater. 166(2–3), 1244 (2009)PubMedGoogle Scholar
  43. 43.
    M.C. Lu, G.D. Roam, J.N. Chen, C.P. Huang, J. Photochem. Photobiol. A Chem. 76(1–2), 103 (1993)Google Scholar
  44. 44.
    K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Chem. Eng. J. 178, 40 (2011)Google Scholar
  45. 45.
    R.J. Davis, J.L. Gainer, G. O’Neal, I. Wu, I.W. Water, Environ. Res. 66(1), 50 (1994)Google Scholar
  46. 46.
    M.A. Rauf, M.A. Meetani, S. Hisaindee, Desalination 276(1–3), 13 (2011)Google Scholar
  47. 47.
    Y.A. Shaban, Desalin. Water Treat. 53(3), 737 (2015)Google Scholar
  48. 48.
    M. Nikazar, K. Gholivand, K. Mahanpoor, Desalination 219(1–3), 293 (2008)Google Scholar
  49. 49.
    W.Z. Tang, C.P. Huang, Water Res. 29(2), 745 (1995)Google Scholar
  50. 50.
    F. Aoudjit, O. Cherifi, D. Halliche, Sep. Sci. Technol. 54(7), 1095 (2019)Google Scholar
  51. 51.
    M. Bekbölet, I. Balcioglu, Water. Sci. Technol. 34(9), 73 (1996)Google Scholar
  52. 52.
    F. Akbal, A.N. Onar, Environ. Monit. Assess. 83(3), 295 (2003)PubMedGoogle Scholar
  53. 53.
    K.M. Parida, S.S. Dash, D.P. Das, J. Colloid Interface Sci. 298(2), 787 (2006)PubMedGoogle Scholar
  54. 54.
    K.M. Reza, A.S.W. Kurny, F. Gulshan, Appl. Water. Sci. 7(4), 1569 (2017)Google Scholar
  55. 55.
    S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Desalination 261(1–2), 3 (2010)Google Scholar
  56. 56.
    C. Xu, R. Killmeyer, M.L. Gray, S.U. Khan, Appl. Catal. B 64(3–4), 312 (2006)Google Scholar
  57. 57.
    Y.A. Shaban, Arab. J. Chem. 12(5), 652 (2019)Google Scholar
  58. 58.
    C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109(23), 11414 (2005)PubMedGoogle Scholar
  59. 59.
    H. Wang, J.P. Lewis, J. Phys.: Condens. Matter 18(2), 421 (2005)Google Scholar
  60. 60.
    M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, J. Phys. Chem. B 101(14), 2632 (1997)Google Scholar
  61. 61.
    Z.H. Al-Azri, W.T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, G.I. Waterhouse, J. Catal. 329, 355 (2015)Google Scholar
  62. 62.
    I.H. Tseng, W.C. Chang, J.C. Wu, Appl. Catal. B. Environ. 37(1), 37 (2002)Google Scholar
  63. 63.
    Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.K. Al Farawati, M.I. Al Zobidi, S.U. Khan, Int. J. Photoenergy 2016, 7 (2016)Google Scholar
  64. 64.
    A.V. Petukhov, Chem. Phy. Lett. 277(5–6), 539 (1997)Google Scholar
  65. 65.
    B. Bayarri, J. Gimenez, D. Curco, S. Esplugas, Catal. Today 101(3–4), 227 (2005)Google Scholar
  66. 66.
    E. Kusvuran, A. Samil, O.M. Atanur, O. Erbatur, Appl. Catal. B. Environ. 58(3–4), 211 (2005)Google Scholar
  67. 67.
    J. Lin, Z. Luo, J. Liu, P. Li, Mat. Sci. Semicon. Proc. 87, 24 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yasar N. Kavil
    • 1
    Email author
  • Yasser A. Shaban
    • 1
    • 2
  • Saeed Saad Alelyani
    • 1
  • Radwan Al-Farawati
    • 1
  • Mohammad I. Orif
    • 1
  • Mohammed A. Ghandourah
    • 1
  • Mark Schmidt
    • 3
  • Adnan J. Turki
    • 1
  • Mousa Zobidi
    • 1
  1. 1.Marine Chemistry Department, Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.National Institute of Oceanography and FisheriesAlexandriaEgypt
  3. 3.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations