Research on Chemical Intermediates

, Volume 46, Issue 1, pp 715–736 | Cite as

α-Fe2O3@carbon core–shell nanostructure for luminescent upconversion and photocatalytic degradation of methyl orange

  • Gnanasekaran MunusamyEmail author
  • Rajaboopathi Mani
  • Krishnakumar VaradharajanEmail author
  • Surumbarkuzhali Narasimhan
  • Chitharaj Munusamy
  • Boopathy Chandrasekaran


The unique characteristics of metal–organic frameworks such as structural tunability, high surface area, low density, and tailored porosity have made this material suitable for different applications, compared to mineralized carbons. To improve the photocatalytic activity of α-Fe2O3, a shell of carbon with different concentrations on the core of α-Fe2O3 was prepared via hydrothermal method. The optical property, crystal phase, and morphology of the synthesized materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectrometer, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). The HR-TEM shows a single-sphere core–shell structure of α-Fe2O3 at higher concentration of carbon (αFC3), which showed a maximum degradation of pollutant about 85% in 2 h and 40 min. It is reasoned that the major dominants O2·– and h+ enhance the degradation. The Fe3+ ions strongly promote the upconversion emission observed at excitation of 620 nm. Photocurrent and Mott–Schottky revealed that the αFC3 core–shell sample shows that the − 0.157 flat-band potential (Vfb) increased the carrier density in the near-surface region accelerating the redox performances. In short, the excellent visible light degradation ability of αFC3 against the methyl orange and high upconversion efficiency were observed in α-Fe2O3@carbon core–shell nanostructure.

Graphic abstract


α-Fe2O3 Core–shell Photoluminescence Methylene orange Photocatalytic activity 



The author M. Gnanasekaran thanks to Department of Nanoscience and Nanotechnology, Karunya University, and Sophisticated Test and Instrumentation Centre, Kochi University, Kochi, 682 022, Kerala, India, for the support of analytical measurements.

Author contributions

All the authors contributed to the discussion and preparation part of the manuscript. The final version of the manuscript was approved by all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    S.H.S. Chan, T. Yeong Wu, J.C. Juan, C.Y. Teh, J. Chem. Technol. Biotechnol. 9, 1130 (2011)Google Scholar
  2. 2.
    A.S. Stasinakis, Glob. Nest J. 3, 376 (2008)Google Scholar
  3. 3.
    K. Kestioğlu, T. Yonar, N. Azbar, Process Biochem. 7, 2409 (2005)Google Scholar
  4. 4.
    E.J. Hart, A. Henglein, J. Phys. Chem. 20, 4342 (1985)Google Scholar
  5. 5.
    A.E. Alegria, Y. Lion, T. Kondo, P. Riesz, J. Phys. Chem. 12, 4908 (1989)Google Scholar
  6. 6.
    S. Bhukal, M. Dhiman, S. Bansal, M.K. Tripathi, S. Singhal, RSC Adv. 2, 1360 (2016)Google Scholar
  7. 7.
    X. Huang, X. Zhan, C. Wen, F. Xu, L. Luo, J. Mater. Sci. Technol. 5, 855 (2018)Google Scholar
  8. 8.
    H. Guo, M. Chen, Q. Zhong, Y. Wang, W. Ma, J. Ding, J CO2 Util 33, 233 (2019)Google Scholar
  9. 9.
    S. Balu, S. Velmurugan, S. Palanisamy, S.W. Chen, V. Velusamy, T.C. Yang, E.S.I. El-Shafey, J. Taiwan Inst. Chem. Eng. 99, 258 (2019)Google Scholar
  10. 10.
    Z. Li, C. Li, Y. Mei, L. Wang, G. Du, Y. Xiong, Nanoscale 7, 3030 (2013)Google Scholar
  11. 11.
    D.X. Xu, Z.W. Lian, M.L. Fu, B.L. Yuan, J.W. Shi, H.J. Cui, Appl. Catal. B Environ. 142, 377 (2013)Google Scholar
  12. 12.
    W. Wang, M.Y. Ding, C.H. Lu, Y.R. Ni, Z.Z. Xu, Appl. Catal. B Environ. 144, 379 (2014)Google Scholar
  13. 13.
    X. An, C.Y. Jimmy, RSC Adv. 8, 1426 (2011)Google Scholar
  14. 14.
    F. Auzel, C. R. Acad. Sci. B 262, 1016 (1966)Google Scholar
  15. 15.
    F. Auzel, Chem. Rev. 104, 139 (2004)PubMedGoogle Scholar
  16. 16.
    H. Yin, Y. Zhao, Q. Hua, J. Zhang, Y. Zhang, X. Xu, Y. Long, J. Tang, F. Wang, Front Chem. 7, 58 (2019)PubMedPubMedCentralGoogle Scholar
  17. 17.
    A. Kusior, M. Synowiec, K. Zakrzewska, M. Radecka, Crystals 9, 163 (2019)Google Scholar
  18. 18.
    H. Wang, J. Mao, Z. Zhang, Q. Zhang, L. Zhang, P. Li, Toxins 11, 105 (2019)PubMedCentralGoogle Scholar
  19. 19.
    T. Wang, M. Sun, H. Sun, J. Shang, P.K. Wong, Appl. Surf. Sci. 464, 43 (2019)Google Scholar
  20. 20.
    S. Balu, K. Uma, G.T. Pan, T. Yang, S. Ramaraj, Materials 11, 1030 (2018)PubMedCentralGoogle Scholar
  21. 21.
    X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 30, 7019 (1997)Google Scholar
  22. 22.
    J. van Embden, J. Jasieniak, D.E. Gómez, P. Mulvaney, M. Giersig, Aust. J. Chem. 7, 457 (2007)Google Scholar
  23. 23.
    P.M. Forster, P.M. Thomas, A.K. Cheetham, Chem. Mater. 14, 17 (2002)Google Scholar
  24. 24.
    J.H. Bang, K.S. Suslick, Adv. Mater. 10, 1039 (2010)Google Scholar
  25. 25.
    G. Munusamy, K. Varadharajan, S. Narasimhan, U.G. Thangapandiyan, Res Chem Intermed. 12, 7815 (2018)Google Scholar
  26. 26.
    X. Zhu, Q. Su, W. Feng, F. Li, Chem. Soc. Rev. 4, 1025 (2017)Google Scholar
  27. 27.
    L. Vayssieres, C. Sathe, S.M. Butorin, D.K. Shuh, J. Nordgren, J. Guo, Adv. Mater. 19, 2320 (2005)Google Scholar
  28. 28.
    X. Sun, Y. Li, Angew. Chem. 5, 607 (2004)Google Scholar
  29. 29.
    D. Andreeva, T. Tabakova, V. Idakiev, P. Christov, R. Giovanoli, Appl. Catal. 1, 9 (1998)Google Scholar
  30. 30.
    M. Li, H. He, Vacuum 143, 371 (2017)Google Scholar
  31. 31.
    A. Umar, R. Ahmad, A. Al-Hajry, S.H. Kim, M.E. Abaker, Y.B. Hahn, New J. Chem. 12, 5873 (2014)Google Scholar
  32. 32.
    J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Angew. Chem. 37, 11039 (2015)Google Scholar
  33. 33.
    A.K. Patra, S.K. Kundu, A. Bhaumik, D. Kim, Nanoscale 1, 365 (2016)Google Scholar
  34. 34.
    C.J. Weng, Y.L. Chen, C.M. Chien, S.C. Hsu, Y.S. Jhuo, J.M. Yeh, C.F. Dai, Electrochim. Acta 95, 162 (2013)Google Scholar
  35. 35.
    W. Cai, J. Yu, B. Cheng, B.L. Su, M. Jaroniec, J. Phys. Chem. C 33, 14739 (2009)Google Scholar
  36. 36.
    Y.H. Sun, S. Liu, F.C. Zhou, J.M. Nan, Appl. Surf. Sci. 390, 175 (2016)Google Scholar
  37. 37.
    D. Qi, H. Zhang, J. Tang, C. Deng, X. Zhang, J. Phys. Chem. C 20, 9221 (2010)Google Scholar
  38. 38.
    K. Cheng, Y.M. Zhou, Z.Y. Sun, H.B. Hu, H. Zhong, X.K. Kong, Q.W. Chen, Dalton Trans. 19, 5854 (2012)Google Scholar
  39. 39.
    F. Zhang, H. Hu, H. Zhong, N. Yan, Q. Chen, Dalton Trans. 16, 6041 (2014)Google Scholar
  40. 40.
    C.A. Gorski, M.M. Scherer, Aquat. Redox Chem. 1071, 315 (2011)Google Scholar
  41. 41.
    Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, B.S. Zou, C. Burda, Phys. Rev. B. 12, 125411 (2005)Google Scholar
  42. 42.
    P. Kubelka, Josa 5, 448 (1948)Google Scholar
  43. 43.
    G.H. Wang, W.C. Li, K.M. Jia, B. Spliethoff, F. Schüth, A.H. Lu, Appl. Catal. A Gen. 1–2, 42 (2009)Google Scholar
  44. 44.
    N. Bloembergen, Phys. Rev. Lett. 3, 84 (1959)Google Scholar
  45. 45.
    J.L. Clark, P.F. Miller, G. Rumbles, J. Phys. Chem. A 24, 4428 (1998)Google Scholar
  46. 46.
    A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubí-Robles, B. Fernández, M.J. Ruedas-Rama, A. Megia-Fernández, A. Lapresta-Fernández, F. Santoyo-Gonzalez, A. Schrott-Fischer, L.F. Capitan-Vallvey, Chem. Commun. 11, 1103 (2013)Google Scholar
  47. 47.
    X. Wang, L. Cao, S.T. Yang, F. Lu, M.J. Meziani, L. Tian, K.W. Sun, M.A. Bloodgood, Y.P. Sun, Angew. Chem. Int. Ed. 31, 5310 (2010)Google Scholar
  48. 48.
    D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energ Environ. Sci. 5, 6682 (2012)Google Scholar
  49. 49.
    G.C.N.N.A.R. Schön, J. Tummavuori, B. Lindström, C.R. Enzell, C.G. Swahn, Acta Chem. Scand. 27, 2623 (1973)Google Scholar
  50. 50.
    S. Shen, J. Zhou, C.L. Dong, Y. Hu, E.N. Tseng, P. Guo, L. Guo, S.S. Mao, Sci. Rep. 4, 6627 (2014)PubMedPubMedCentralGoogle Scholar
  51. 51.
    Y. Chen, J. Peng, H. Xiao, H. Peng, L. Bu, Z. Pan, Y. He, F. Chen, X. Wang, S. Li, Appl. Surf. Sci. 420, 773 (2017)Google Scholar
  52. 52.
    L. Jiang, X. Yuan, G. Zeng, X. Chen, Z. Wu, J. Liang, J. Zhang, H. Wang, H. Wang, ACS Sustain. Chem. Eng. 7, 5831 (2017)Google Scholar
  53. 53.
    J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao, J. Li, ACS Appl. Mater. Interfaces. 1, 171 (2011)Google Scholar
  54. 54.
    S. Min, G. Lu, J. Phys. Chem. C 37, 19644 (2012)Google Scholar
  55. 55.
    Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Sol. Energy Mater. Sol. Cells 137, 175 (2015)Google Scholar
  56. 56.
    J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Nanotechnology 18, 185501 (2011)Google Scholar
  57. 57.
    C. Zhao, G. Tan, W. Yang, C. Xu, T. Liu, Y. Su, H. Ren, A. Xia, Sci. Rep. 6, 38603 (2016)PubMedPubMedCentralGoogle Scholar
  58. 58.
    H. Fu, S. Sun, X. Yang, W. Li, X. An, H. Zhang, Y. Dong, X. Jiang, A. Yu, Powder Technol. 328, 389 (2018)Google Scholar
  59. 59.
    L. Ye, X. Liu, Q. Zhao, H. Xie, L. Zan, J. Mater. Chem. A 31, 8978 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gnanasekaran Munusamy
    • 1
    Email author
  • Rajaboopathi Mani
    • 2
  • Krishnakumar Varadharajan
    • 1
    Email author
  • Surumbarkuzhali Narasimhan
    • 3
  • Chitharaj Munusamy
    • 1
  • Boopathy Chandrasekaran
    • 1
  1. 1.School of Physical SciencesPeriyar UniversitySalemIndia
  2. 2.Centre for Research and DevelopmentPRIST Deemed to be UniversityThanjavurIndia
  3. 3.Department of PhysicsGovernment Arts CollegeSalemIndia

Personalised recommendations