Advertisement

Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde polymer as an efficient heterogeneous catalyst for Suzuki–Miyaura coupling reactions

  • 82 Accesses

Abstract

This work is described as an environmental friendly approach for Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde-based polymeric material (Cu@MCOP) which has been successfully synthesized by simple approaches using commercially available starting materials via solvothermal techniques and without using any toxic reagents and chemicals. The structural, morphological, physicochemical characteristics and catalytic activity of the heterogeneous catalyst (Cu@MCOP) were analyzed by various instrumental methods including powder X-ray diffraction, FT-IR, UV-DRS, X-ray photoelectron spectroscopy, SEM and elemental mapping which have been used to authenticate the polymeric materials Cu@MCOP. The catalytic performance of Cu@MCOP as solid heterogeneous catalyst was evaluated in synthesis of various biphenyl derivatives through Suzuki–Miyaura cross-coupling reactions of various aryl halides with substituted organoboranes under normal reaction conditions. Furthermore, the copper catalyst was easily available, low cost, cheap and best instead of palladium, which shows good catalytic activity and excellent yield (up to 86%); the catalyst can be separated easily and recycled for more than five times.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2

References

  1. 1.

    B.Y. No, M.G. Kim, J. Appl. Polym. Sci. 93, 2559 (2004)

  2. 2.

    Y.S. He, X. Liu, Y.Z. Chen, L.M. Qu, Appl.Mater.Inter. 42, 1482 (2013)

  3. 3.

    A. Baliani, V. Peal, L. Gros, R. Brun, M. Kaiser, M.P. Barrett, I.H. Gilbert, Org. Biomol. Chem. 7, 1154 (2009)

  4. 4.

    P. Puthiaraj, Y.M. Chung, W.S. Ahn, J. Mol. Catal. 441, 1 (2017)

  5. 5.

    Z. Zhang, J. Long, L. Yang, W. Chen, W. Dai, X. Fu, X. Wang, Chem. Sci. 2, 1826 (2011)

  6. 6.

    Y. Yao, B. Zhang, J. Shi, Q. Yang, Appl. Mater. Interfaces 7, 7413 (2015)

  7. 7.

    R.L. Tseng, F.C. Wu, R.S. Juang, Sep. Purif. Technol. 140, 53 (2015)

  8. 8.

    Z. Lv, C. Liang, J. Cui, Y. Zhang, S. Xu, RSC Adv. 5, 18213 (2015)

  9. 9.

    Y. Wang, H. Xuan, G. Lin, F. Wang, Z. Chen, X. Dong, J. Power Sources 319, 262 (2016)

  10. 10.

    F. Ma, H. Zhao, L. Sun, Q. Li, L. Huo, T. Xia, S. Gao, G. Pang, Z. Shi, S.J. Feng, J. Mater. Chem. 22, 13464 (2012)

  11. 11.

    M. Li, Y. Zhang, L. Yang, Y. Liu, J. Yao, Electrochim. Acta 166, 310 (2015)

  12. 12.

    G. Zhang, C. Ni, L. Liu, G. Zhao, F. Finaa, J.T.S. Irvine, J. Mater. Chem. A 3, 15413 (2015)

  13. 13.

    J. Wang, H. Xu, X. Qian, Y. Dong, J. Gao, G. Qian, J. Yao, Chem. Asian J. 10, 1276 (2015)

  14. 14.

    R. Sasikumar, P. Ranganathan, S.M. Chen, P. Sireesha, T.W. Chen, P. Veerakumar, S.P. Rwei, T.J. Kavitha, Colloid Interface Sci. 494, 82 (2017)

  15. 15.

    Q. Zhuanga, L. Suna, Y. Ni, Talanta 164, 458 (2017)

  16. 16.

    X. Jiang, F. Tian, F. Yang, X. Dou, J. Wang, Y. Song, Sens. Actuators B Chem. 238, 605 (2017)

  17. 17.

    D. Schwarza, J. Weber, Polymer 155, 83 (2018)

  18. 18.

    L.X. Yin, J. Liebscher, Chem. Rev. 7, 133 (2007)

  19. 19.

    J. Albaneze-Walker, J.A. Murry, A. Soheili, S. Ceglia, S.A. Springfield, C. Bazaral, P.G. Dormer, D.L. Hughes, Tetrahedron 61, 6330 (2005)

  20. 20.

    A. Meijere, F. Diderich, Metal-Catalyzed Cross-Coupling Reactions, 2nd edn. (Wiley-VCH, Weinheim, 2008)

  21. 21.

    A. Yokoyama, H. Suzuki, Y. Kubota, K. Ohuchi, H. Higashimura, T. Yokozawa, J. Am. Chem. Soc. 129, 7236 (2007)

  22. 22.

    H. Noguchi, K. Hojo, M. Suginome, J. Am. Chem. Soc. 129, 758 (2007)

  23. 23.

    H. Veisi, M. Ghorbani, S. Hemmati, Mat. Sci. Eng. C 98, 584 (2019)

  24. 24.

    H. Veisi, A.A. Manesh, N. Eivazia, A.R. Faraji, RSC Adv. 5, 20098 (2015)

  25. 25.

    H. Veisi, S.A. Mirshokraie, H. Ahmadian, J. Biol. Macromol. 108, 419 (2018)

  26. 26.

    R.G. Vaghei, S. Hemmati, H. Veisi, Tetrahedron Lett. 54, 7095 (2013)

  27. 27.

    H. Veisi, T. Tamoradi, B. Karmakar, P. Mohammadi, S. Hemmati, Mat. Sci. Eng. C 104, 109919 (2019)

  28. 28.

    H. Veisi, M. Pirhayati, A. Kakanejadifard, P. Mohammadi, M.R. Abdi, J. Gholami, S. Hemmati, Chem. Sel. 14, 1820 (2018)

  29. 29.

    H. Veisi, P.M. Biabri, H. Falahi, Tetrahedron Lett. 58, 3482 (2017)

  30. 30.

    E. Farzad, H. Veisi, J. Ind. Eng. Chem. 60, 114 (2018)

  31. 31.

    H. Veisi, S.A. Kamangar, P. Mohammadi, S. Hemmati, Appl. Org. Metal. Chem. 33, 104909 (2019)

  32. 32.

    H. Veisi, S. Hemmati, P. Safarimehr, J. Catal. 365, 204 (2018)

  33. 33.

    H. Veisi, P. Safarimehr, S. Hemmati, Mat. Sci. Eng. C 96, 310 (2019)

  34. 34.

    G.Y. Li, Angew. Chem. Int. Ed. 40, 1513 (2001)

  35. 35.

    A. Verma, K. Tomar, P.K. Bharadwaj, Inorg. Chem. 58, 1003 (2019)

  36. 36.

    S.E. Hooshmand, B. Heidari, R. Sedghi, R.S. Varma, Green Chem. 21, 381 (2019)

  37. 37.

    G. Evano, N. Blanchard, Wiley (2013)

  38. 38.

    M. Rajabzadeh, R. Khalifeh, H. Eshghi, M. Bakavoli, J. Catal. 360, 261 (2018)

  39. 39.

    A. Mohammadinezhad, B. Akhlaghinia, Green Chem. 19, 5625 (2017)

  40. 40.

    J. Qiao, W. Zhu, G. Zhuo, H. Zhou, X. Jiang, J. Chin, Catalysis 29, 209 (2008)

  41. 41.

    S.K. Gurung, S. Thapa, A. Kafle, D.A. Dickie, R. Giri, Org. Lett. 16, 1264 (2014)

  42. 42.

    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva, Chem. Sel. 2, 1063 (2017)

  43. 43.

    V. Sadhasivam, M. Mariyappan, M. Harikrishnan, C. Chithiraikumar, S. Murugesan, A. Siva, Res. Chem. Intermed. 44, 2853 (2018)

  44. 44.

    V. Sadhasivam, R. Balasaravanan, A. Siva, Appl. Organomet. Chem. 33, e4994 (2019).

  45. 45.

    V. Sadhasivam, M. Mariyappan, A. Siva, Chem. Sel. 3, 13442 (2018)

  46. 46.

    S. Zhang, W. Ji, Y. Han, X. Gu, H. Li, J. Sun, J. Appl. Polym. Sci. 135, 1 (2018)

  47. 47.

    J. Liu, J. Liu, L. Cui, Z. Zhao, Y. Li, Y. Wei, Q. Sun, J. Environ. Sci. 48, 45 (2018)

  48. 48.

    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva, ChemCatChem 10, 3833 (2018)

  49. 49.

    J.A. Faniran, K.S.J. Patel, J. Inorg. Nucl. Chem. 36, 2261 (1974)

  50. 50.

    S. Barua, G. Das, L. Aidew, A.K. Buragohainc, N. Karak, RSC Adv. 3, 14997 (2013)

  51. 51.

    Y. Han, M. Zhang, Y.Q. Zhang, Z.H. Zhang, Green Chem. 20, 4891 (2018)

  52. 52.

    P. Puthiaraj, K. Pitchumani, Chem. Eur. J. 20, 8761 (2014)

  53. 53.

    P. Muthu Kumar, V. Vinod Kumar, G. Rajendra Kumar Reddy, P. Suresh Kumar, S. Philip Anthony, Catal. Sci. Technol. 8, 1414 (2018)

  54. 54.

    J.C. Wang, Y.H. Hu, G.J. Chen, Y.B. Dong, Chem. Commun. 52, 13116 (2016)

  55. 55.

    G.B. Bidita Varadwaj, S. Rana, K.M. Parida, RSC Adv. 3, 7570 (2013)

  56. 56.

    J. Wei, P. Hing, Z.Q. Mo, Surf. Interface Anal. 28, 208 (1999)

  57. 57.

    B. Putz, G. Milassin, Y. Butenko, B. Volker, C. Gammer, C. Semprimoschnig, M.J. Cordill, Surf. Coat. Technol. 332, 368 (2017)

  58. 58.

    T. Flessner, S.J. Doye Prakt, Chemistry 341, 18 (1999)

  59. 59.

    K. Said, R.B. Salem, Adv. Chem. Eng. Sci. 6, 111 (2016)

  60. 60.

    N. Nakasuka, K. Azuma, M. Tanaka, Inorg. Chim. Acta 238, 83 (1995)

  61. 61.

    S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song, C.Y. Su, W. Wang, J. Am. Chem. Soc. 133, 19816 (2011)

  62. 62.

    G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 131, 8262 (2009)

  63. 63.

    Y. Li, X.A. Hong, D.M. Collard, M.A. El-Sayed, Org. Lett. 2, 2385 (2000)

  64. 64.

    J.Z. Deng, D.V. Paone, A.T. Ginnetti, H. Kurihara, S.D. Dreher, S.A. Weissman, S.R. Stauffer, C.S. Burgey, Org. Lett. 11, 345 (2000)

  65. 65.

    S.L. Zultansk, G.C. Fu, J. Am. Chem. Soc. 135, 624 (2013)

  66. 66.

    J.H. Li, J.L. Li, D.P. Wang, S.F. Pi, Y.X. Xie, M.B. Zhang, X.C. Hu, J. Org. Chem. 72, 2053 (2007)

  67. 67.

    M.B. Thathagar, J. Beckers, G. Rothenberg, J. Am, Chem. Soc. 124, 11858 (2002)

  68. 68.

    A. Klapars, S.L. Buchwald, J. Am. Chem. Soc. 124, 14844 (2002)

  69. 69.

    R. Shang, Y. Fu, Y. Wang, Q. Xu, H.Z. Yu, L. Liu, Angew. Chem. Int. Ed. 48, 9350 (2009)

Download references

Acknowledgements

AS and VS acknowledge the financial support of the Department of Science and Technology, SERB, Extramural Major Research Project (Grant No. EMR/2015/000969), Council of Scientific and Industrial Research (CSIR), HRDG, File No. 01(2901)/17/EMR-II, New Delhi, Department of Science and Technology DST/TM/CERI/C130(G), New Delhi, India. Further, VS acknowledges the financial support of the CSIR, New Delhi, for providing SRF file No. 124065/2k17/1, 09/201(0420)/18-EMR-I, New Delhi. We also acknowledge to UPE, DST-FIST for providing instrumental support.

Author information

Correspondence to Ayyanar Siva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1599 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadhasivam, V., Sankar, B., Elamathi, G. et al. Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde polymer as an efficient heterogeneous catalyst for Suzuki–Miyaura coupling reactions. Res Chem Intermed 46, 681–700 (2020) doi:10.1007/s11164-019-03984-0

Download citation

Keywords

  • Suzuki–Miyaura
  • Melamine
  • Heterogeneous
  • Shelton test
  • Covalent organic polymer