Advertisement

Electrochemical synthesis and characterization of basic bismuth nitrate [Bi6O5(OH)3](NO3)5·2H2O: a potential highly efficient sorbent for textile reactive dye removal

Abstract

A new method of synthesis was developed for the preparation of basic bismuth nitrate [Bi6O5(OH)3](NO3)5·2H2O (ECBBN). Electrochemical synthesis of the material was carried out by galvanostatic electrodeposition from an acidic Bi(III) solution on a Ti substrate and further thermal treatment in air at 200 °C. Characterization of ECBBN was conducted by employing SEM–EDX, N2 adsorption, XRD and FTIR, and its pI was also determined. The analyses showed that the material obtained was pure [Bi6O5(OH)3](NO3)5·2H2O. Morphologically, ECBBN aggregates were composed of crystals, some smaller than 50 nm. Electrochemically synthesized sorbent (ECBBN) was used for the removal of the textile dye Reactive Blue 19 (RB19) from deionized water and model solutions of polluted river water, and it showed considerably superior sorption performance compared to other inorganic sorbents synthesized by conventional methods reported in the literature. A kinetic study suggests that the sorption process is both under reaction and diffusion control. Equilibration of the sorption process was attained in several minutes, i.e. the sorption process is very fast. The sorption equilibrium data were well interpreted by the Langmuir, Redlich–Peterson and Brouers–Sotolongo isotherm. Using Langmuir isotherm, the maximum sorption capacity of ECBBN was reached at pH 2 and was 1049.19 mg g−1.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

BBN:

Basic bismuth nitrate

ECBBN:

Electrochemically synthesized [Bi6O5(OH)3](NO3)5·2H2O

RB19:

Reactive Blue 19

pI:

Isoelectric point

References

  1. 1.

    D. Brown, H.R. Hitz, L. Schäfer, Chemosphere 10, 245 (1981)

  2. 2.

    S. Padmavathy, S. Sandhya, K. Swaminathan, Y.V. Subrahmanyam, T. Chakrabarti, S.N. Kaul, Chem. Biochem. Eng. Q. 17, 147 (2003)

  3. 3.

    L. Ćurković, D. Ljubas, H. Juretić, React. Kinet. Mech. Catal. 99, 201 (2009)

  4. 4.

    S. Peng, D. Zhang, H. Huang, Z. Jin, X. Peng, Res. Chem. Intermed. 45, 1545 (2019)

  5. 5.

    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)

  6. 6.

    J. Pierce, J. Soc. Dye. Colour. 110, 131 (1994)

  7. 7.

    Y.L. Qi, Y.F. Zheng, X.C. Song, J. Taiwan Inst. Chem. Eng. 71, 355 (2017)

  8. 8.

    G. Moussavi, M. Mahmoudi, J. Hazard. Mater. 168, 806 (2009)

  9. 9.

    S. Banerjee, G.C. Sharma, R.K. Gautam, M.C. Chattopadhyaya, S.N. Upadhyay, Y.C. Sharma, J. Mol. Liq. 213, 162 (2016)

  10. 10.

    J. Fan, D. Yu, W. Wang, B. Liu, Cellulose 26, 3955 (2019)

  11. 11.

    K. Ding, W. Wang, D. Yu, W. Wang, P. Gao, B. Liu, Appl. Surf. Sci. 454, 101 (2018)

  12. 12.

    Y. Huang, Z. Guo, H. Liu, S. Zhang, P. Wang, J. Lu, and Y. Tong, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903490

  13. 13.

    K. Ye, Y. Li, H. Yang, M. Li, Y. Huang, S. Zhang, H. Ji, Appl. Catal. B Environ. 259, 118085 (2019)

  14. 14.

    Y. Wang, D. Yu, W. Wang, P. Gao, L. Zhang, S. Zhong, B. Liu, Coll. Surf. A Physicochem. Eng. Asp. 578, 123608 (2019)

  15. 15.

    K. Ding, D. Yu, W. Wang, P. Gao, B. Liu, Appl. Surf. Sci. 445, 39 (2018)

  16. 16.

    L. Lin, D. Yu, W. Wang, P. Gao, K. Bu, B. Liu, Mater. Lett. 185, 507 (2016)

  17. 17.

    B. Liu, L. Lin, D. Yu, J. Sun, Z. Zhu, P. Gao, W. Wang, Cellulose 25, 1089 (2018)

  18. 18.

    R. Yang, F. Dong, X. You, M. Liu, S. Zhong, L. Zhang, B. Liu, Mater. Lett. 252, 272 (2019)

  19. 19.

    Z. Zhu, Q. Han, D. Yu, J. Sun, B. Liu, Mater. Lett. 209, 379 (2017)

  20. 20.

    G. Ciobanu, S. Barna, M. Harja, Arch. Environ. Prot. 42, 3 (2016)

  21. 21.

    Z. Ayazi, Z.M. Khoshhesab, S. Norouzi, Desalin. Water Treat. 57, 25301 (2016)

  22. 22.

    Z.M. Khoshhesab, M. Ahmadi, Desalin. Water Treat. 57, 20037 (2015)

  23. 23.

    N.K. Nga, P.T.T. Hong, T.D. Lam, T.Q. Huy, J. Colloid Interface Sci. 398, 210 (2013)

  24. 24.

    N.K. Nga, H.D. Chinh, P.T.T. Hong, T.Q. Huy, J. Polym. Environ. 25, 146 (2016)

  25. 25.

    A. Mirmohseni, M.S. Seyed Dorraji, A. Figoli, F. Tasselli, Bioresour. Technol. 121, 212 (2012)

  26. 26.

    M. Shanehsaz, S. Seidi, Y. Ghorbani, S.M.R. Shoja, S. Rouhani, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 481 (2015)

  27. 27.

    M. Kostić, M. Radović, N. Velinov, S. Najdanović, D. Bojić, A. Hurt, A. Bojić, Ecotoxicol. Environ. Saf. 159, 332 (2018)

  28. 28.

    Y. Yang, H. Liang, N. Zhu, Y. Zhao, C. Guo, L. Liu, Chemosphere 93, 701 (2013)

  29. 29.

    L. Xie, J. Wang, Y. Hu, Z. Zheng, S. Weng, P. Liu, X. Shi, D. Wang, Mater. Chem. Phys. 136, 309 (2012)

  30. 30.

    Y. He, Y. Zhang, H. Huang, N. Tian, Y. Luo, Inorg. Chem. Commun. 40, 55 (2014)

  31. 31.

    E.A. Abdullah, A.H. Abdullah, Z. Zainal, M.Z. Hussein, T.K. Ban, E-J. Chem. 9, 1885 (2012)

  32. 32.

    Y.M. Yukhin, T.V. Daminova, L.I. Afonina, B.B. Bokhonov, O.A. Logutenko, A.I. Aparnev, K.Y. Mikhailov, T.A. Udalova, V.I. Evseenko, Chem. Sustain. Dev. 12, 395 (2004)

  33. 33.

    I. Zhitomirsky, Adv. Colloid Interface Sci. 97, 279 (2002)

  34. 34.

    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

  35. 35.

    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

  36. 36.

    T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Ind. Eng. Chem. Res. 50, 10017 (2011)

  37. 37.

    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

  38. 38.

    G. Williamson, W. Hall, Acta Metall. 1, 22 (1953)

  39. 39.

    X.-D. Liu, H. Masato, X.-G. Zheng, W.-J. Tao, D.-D. Meng, S.-L. Zhang, Q.-X. Guo, Chin. Phys. Lett. 28, 017803 (2011)

  40. 40.

    Z. Ding, G.Q. Lu, P.F. Greenfield, J. Phys. Chem. B 104, 4815 (2000)

  41. 41.

    T. Wajima, Y. Umeta, S. Narita, K. Sugawara, Desalination 249, 323 (2009)

  42. 42.

    P. Ziegler, I. Grigoraviciute, K. Gibson, J. Glaser, A. Kareiva, H.J. Meyer, J. Solid State Chem. 177, 3610 (2004)

  43. 43.

    W.T. Carnall, S. Siegel, J.R. Ferraro, B. Tani, E. Gebert, Inorg. Chem. 12, 560 (1973)

  44. 44.

    J.-C.G. Bünzli, E. Moret, J.-R. Yersin, Helv. Chim. Acta 61, 762 (1978)

  45. 45.

    R. Irmawati, M.N.N. Nasriah, Y.H. Taufiq-Yap, S.B.A. Hamid, Catal. Today 93–95, 701 (2004)

  46. 46.

    V. Fruth, M. Popa, D. Berger, C.M. Ionica, M. Jitianu, J. Eur. Ceram. Soc. 24, 1295 (2004)

  47. 47.

    A.N. Christensen, M. Chevallier, J. Skibsted, B.B. Iversen, J. Chem. Soc., Dalton Trans. 265 (2000)

  48. 48.

    V. Kumari, A. Bhaumik, Dalton Trans. 44, 11843 (2015)

  49. 49.

    H. Javadian, M.T. Angaji, M. Naushad, J. Ind. Eng. Chem. 20, 3890 (2014)

  50. 50.

    S. Li, J. Zhang, S. Jamil, Q. Cai, S. Zang, Res. Chem. Intermed. 44, 3933 (2018)

  51. 51.

    M.A. Behnajady, S. Yavari, N. Modirshahla, Chem. Ind. Chem. Eng. Q. 20, 97 (2014)

  52. 52.

    Y.S. Ho, G. McKay, Chem. Eng. J. 70, 115 (1998)

  53. 53.

    S. Lagergren, K. Sven, Vetenskapsakademiens Handl. 24, 1 (1898)

  54. 54.

    W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. 89, 31 (1963)

  55. 55.

    Y.F. Lam, L.Y. Lee, S.J. Chua, S.S. Lim, S. Gan, Ecotoxicol. Environ. Saf. 127, 61 (2016)

  56. 56.

    T. Todorciuc, L. Bulgariu, V.I. Popa, Cellul. Chem. Technol. 49, 439 (2015)

  57. 57.

    K. Vijayaraghavan, J. Mao, Y.S. Yun, Bioresour. Technol. 99, 2864 (2008)

  58. 58.

    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

  59. 59.

    H. Freundlich, Z. Für Phys. Chem. 57, 385 (1906)

  60. 60.

    O. Redlich, D.L. Peterson, J. Phys. Chem. 63, 1024 (2007)

  61. 61.

    F. Brouers, O. Sotolongo, F. Marquez, J.P. Pirard, Phys. A Stat. Mech. Appl. 349, 271 (2005)

  62. 62.

    M.C. Ncibi, S. Altenor, M. Seffen, F. Brouers, S. Gaspard, Chem. Eng. J. 145, 196 (2008)

  63. 63.

    K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Ind. Eng. Chem. Fundam. 5, 212 (1966)

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. TR34008).

Author information

Correspondence to Slobodan M. Najdanović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najdanović, S.M., Petrović, M.M., Kostić, M.M. et al. Electrochemical synthesis and characterization of basic bismuth nitrate [Bi6O5(OH)3](NO3)5·2H2O: a potential highly efficient sorbent for textile reactive dye removal. Res Chem Intermed 46, 661–680 (2020) doi:10.1007/s11164-019-03983-1

Download citation

Keywords

  • Basic bismuth nitrate
  • Electrochemical synthesis
  • Sorption
  • Textile dye
  • Reactive Blue 19