Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 621–637 | Cite as

Dual basic ionic liquid as a catalyst for synthesis of (2-amino-3-cyano-4H-chromen-4-yl) phosphonic acid diethyl ester and its molecular docking study

  • D. S. GaikwadEmail author
  • K. A. Undale
  • A. A. Patravale
  • P. B. Choudhari
Article
  • 44 Downloads

Abstract

A series of (2-amino-3-cyano-4H-chromen-4-yl) phosphonic acid diethyl ester derivatives were synthesized from salicylaldehyde, malononitrile and triethylphosphite in ethanol/water (1:1) system using a new dual basic ionic liquid, i.e., 1-[3-(dimethylamino)propyl]-1,4-diazabicyclo[2.2.2]octan-1-ium hydroxide at ambient temperature. The attractive features of this protocol are higher yields (more than 95%), low cost, reduced environmental impact, shorter reaction time, reusability of IL (up to 7 times) and convenience of procedure. The possible bioactivity study was also carried out by using molecular docking study for all the synthesized compounds and molecules can be act as anticancer agent.

Graphic abstract

Synthesis of some new (2-amino-3-cyano-4H-chromen-4-yl) phosphonic acid diethyl ester derivatives by using new dual basic ionic liquid.

Keywords

Task-specific ionic liquid Phosphonate Green chemistry Azo salicylaldehydes 

Notes

Acknowledgements

One of the authors DSG gratefully acknowledges Department of Science and Technology, New Delhi India for financial assistance under Start-up research Grant [No. SB/FT/CS-145/2014].

Supplementary material

11164_2019_3981_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5514 kb)

References

  1. 1.
    D. Prodius, A.-V. Mudring, Coord. Chem. Rev. 363, 1 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Li, S. Yang, W. Wu, H. Jiang, Eur. J. Org. Chem. 2018, 1284 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, L. Pan, L. Wang, J.-J. Zou, Chem. Eng. Sci. 180, 95 (2018)CrossRefGoogle Scholar
  4. 4.
    R.A. Patil, M. Talebi, L.M. Sidisky, D.W. Armstrong, Chromatographia 80, 1563 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Pillai, N. Pal, A. Mandal, J. Surfactants Deterg. 20, 1321 (2017)CrossRefGoogle Scholar
  6. 6.
    Z. Xue, L. Qin, J. Jiang, T. Mu, G. Gao, Phys. Chem. Chem. Phys. 20, 8382 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Summerton, G.A. Hurst, J.H. Clark, Curr. Opin. Green Sustain. Chem. (2018)Google Scholar
  8. 8.
    A.P. Dicks, Curr. Opin. Green Sustain. Chem. 13, 27 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Sowmiah, J.M.S.S. Esperanca, L.P.N. Rebelo, C.A.M. Afonso, Org. Chem. Front. 5, 453 (2018)CrossRefGoogle Scholar
  10. 10.
    A.A. Elgharbawy, F.A. Riyadi, M.Z. Alam, M. Moniruzzaman, J. Mol. Liq. 251, 150 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Gopalakrishnan, K.L. Kenneth, Curr. Org. Synth. 14, 952 (2017)Google Scholar
  12. 12.
    N.V. Plechkova, K.R. Seddon, Chem. Soc. Rev. 37, 123 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Freemantle, Chem. Eng. News 81, 9 (2003)Google Scholar
  14. 14.
    B. SE, World Patent WO 2005/061416 (2005)Google Scholar
  15. 15.
    R.L. Vekariya, J. Mol. Liq. 227, 44 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Wu, P. Cai, X. Zhao, Y. Kong, Y. Pan, J. Sep. Sci. 41, 373 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Yue, P. Wang, X. Hao, S. Zang, J. CO2 Util 21, 238 (2017)CrossRefGoogle Scholar
  18. 18.
    G.Y. Zhu, R. Wang, G.H. Liu, L.Q. Xu, B. Zhang, X.Q. Wu, Chin. Chem. Lett. 18, 633 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Haji, Beilstein J. Org. Chem. 12, 1269 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Kour, A. Kumar, V.K. Rai, C. R. Chimie 20, 140 (2017)CrossRefGoogle Scholar
  21. 21.
    S.C. Fields, Tetrahedron 55, 12237 (1999)CrossRefGoogle Scholar
  22. 22.
    H. Onouchi, T. Miyagawa, A. Furuko, K. Maeda, E. Yashima, J. Am. Chem. Soc. 127, 2960 (2005)CrossRefGoogle Scholar
  23. 23.
    K.J. Gagnon, H.P. Perry, A. Clearfield, Chem. Rev. 112, 1034 (2012)CrossRefGoogle Scholar
  24. 24.
    B. Nowack, Water Res. 37, 2533 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Sarva, S. Tellamekala, M. Sudileti, V.K. Bathal, A.D. Meruva, S.R. Cirandur, Cardiovas. Hematol. Agents Med. Chem. 14, 167 (2016)Google Scholar
  26. 26.
    R.M.N. Kalla, J.-S. Choi, J.-W. Yoo, S.J. Byeon, M.S. Heo, I. Kim, Eur. J. Med. Chem. 76, 61 (2014)CrossRefGoogle Scholar
  27. 27.
    M.N. Elinson, R.F. Nasybullin, G.I. Nikishin, Heteroat. Chem. 24, 398 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Kour, A. Kumar, R. Sharma, R. Chib, I.A. Khan, V.K. Rai, Res. Chem. Inter. 43, 7319 (2017)CrossRefGoogle Scholar
  29. 29.
    D.S. Gaikwad, K.A. Undale, T.S. Shaikh, D.M. Pore, C. R. Chimie 14, 865 (2011)CrossRefGoogle Scholar
  30. 30.
    D.M. Pore, T.S. Shaikh, K.A. Undale, D.S. Gaikwad, C. R. Chimie 13, 1429 (2010)CrossRefGoogle Scholar
  31. 31.
    M.A. Kulkarni, V.R. Pandurangi, U.V. Desai, P.P. Wadgaonkar, C. R. Chimie 15, 745 (2012)CrossRefGoogle Scholar
  32. 32.
    R.M.N. Kalla, S.J. Byeon, M.S. Heo, I. Kim, Tetrahedron 69, 10544 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • D. S. Gaikwad
    • 1
    Email author
  • K. A. Undale
    • 1
  • A. A. Patravale
    • 1
  • P. B. Choudhari
    • 2
  1. 1.Department of ChemistryVivekanand College, KolhapurKolhapurIndia
  2. 2.Department of Pharmaceutical ChemistryBharathi Vidyapeeth College of Pharmacy, KolhapurKolhapurIndia

Personalised recommendations