Advertisement

Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations

  • 43 Accesses

Abstract

Chemical transformations such as nitrile hydration or carbon–oxygen bond formation reactions under gentle conditions are important in the pharmaceutical industry because of the presence of potentially delicate functional groups. We present a non-catalytic hydration reaction of acetonitrile to the corresponding protonated acetamide gold(III) salt [CH3(OH)NH2]AuCl4 under ambient conditions in water using chloroauric acid H[AuCl4] for the first time. ATR-FTIR, Raman and 1H and 13C NMR spectroscopic data in addition to X-ray crystallography supported the isolation of protonated acetamide stabilized with [AuCl4] anion. The protonation of N–C=O fragment of acetamide, O- versus N-protonation aptitude, was validated experimentally and theoretically. The X-ray crystal structure of the acetamide salt [CH3C(OH)NH2]AuCl4 in the triclinic Pī space group suggested the enolic form. However, the reaction of gold(III) trichloride AuCl3 with acetonitrile in water in the absence of a proton source formed the gold(I)/gold(III) salt [Au(CH3CN)2]AuCl4 without hydration as shown in X-ray structure in the monoclinic P21/c space group. Mapping of HOMO–LUMO energy gap using frontier molecular orbital theory and MESP surfaces of OH and NH conformers of acetamide from DFT calculations clearly shows subsequent changes in their profiles with the change in their protonation states. An energy gap of 56.4 kcal/mol in the optimized energies of OH and NH conformers of acetamide along with computed HOMO–LUMO energy difference represents the relative stability of OH conformer compared to NH conformer, thus leading to the conclusion that OH protonation site is more likely to exist in the acetamide structure as compared to the NH protonation state.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. Zabicky, The Chemistry of Amides (Interscience Published, London, 1970)

  2. 2.

    A. Greenberg, C.M. Breneman, J.F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science (Wiley-Interscience, Hoboken, NJ, 2000)

  3. 3.

    J.H. Jones, in Comprehensive Organic Chemistry, vol. 2, Book ed. D. H. R. Barton and W. D. Ollis, Series ed. I. O. Sutherland, Pergamon Press, Oxford (1979)

  4. 4.

    M.M. Green, H.A. Wittcoff, Organic Chemistry Principles and Industrial Practice (Wiley, Weinheim, 2003)

  5. 5.

    T. Nagasawa, H. Yamada, Trends Biotechnol. 7, 153 (1989)

  6. 6.

    M. Kobayashi, T. Nagasawa, H. Yamada, Trends Biotechnol. 10, 402 (1992)

  7. 7.

    M.N. Kopylovich, A.J. Pombeiro, Coord. Chem. Rev. 255, 339 (2011)

  8. 8.

    A.W. Parkins, Platinum Met. Rev. 40, 169 (1996)

  9. 9.

    S. Rao, R.C. Holz, Biochemistry 47, 12057 (2008)

  10. 10.

    S.N. Greene, N.G. Richards, Inorg. Chem. 45, 17 (2006)

  11. 11.

    S.P. Nolan, Acc. Chem. Res. 44, 91 (2011)

  12. 12.

    J. Li, G. Tang, Y. Wang, Y. Wang, Z. Li, H. Li, New J. Chem. 40, 358 (2016)

  13. 13.

    S. Keshipour, A. Shaabani, Res. Chem. Intermed. 41, 5071 (2015)

  14. 14.

    M. Liler, J. Chem. Soc. Perkin Trans. 2, 816 (1972)

  15. 15.

    R. Szostak, J. Aube, M. Szostak, Chem. Commun. 51, 6395 (2015)

  16. 16.

    A.T. Overton, A.A. Mohamed, Inorg. Chem. 51, 5500 (2012)

  17. 17.

    A.S. Hashmi, D.F. Toste, Modern Gold Catalyzed Synthesis (Wiley, Weinheim, 2012)

  18. 18.

    A.A. Mohamed, Gold Bull. 44, 71 (2011)

  19. 19.

    SMART V 4.043 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI (1995)

  20. 20.

    SAINT V 4.035 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI (1995)

  21. 21.

    SADABS. Program for absorption corrections using Siemens CCD based on the method of Robert Blessing, R.H. Blessing, Acta Cryst. A 51, 33 (1995)

  22. 22.

    G.M. Scheldrick, SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany (1997)

  23. 23.

    SHELXTL 5.03 (PC-Version), Program Library for Structure Solution and Molecular Graphics; Bruker Analytical X-ray Systems, Madison, WI (1995)

  24. 24.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford CT, 2016)

  25. 25.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

  26. 26.

    K. Raghavachari, G.W. Trucks, J. Chem. Phys. 91, 1062 (1989)

  27. 27.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, Gaussian 09, Revision A. 02 (Gaussian Inc., Wallingford, CT, 2009)

  28. 28.

    P. Pan, S.A. Wood, Geochim. Cosmochim. Acta 55, 2365 (1991)

  29. 29.

    T. Steiner, Chem. Commun. 4, 313 (1999)

  30. 30.

    N.N. Nurakhmetov, R.A. Omarova, K.K. Ospanov, Koord. Khim. 28, 290 (2002)

  31. 31.

    J. Axhausen, C. Ritter, K. Lux, A. Kornath, Z. Anorg, Allg. Chem. 639, 65 (2013)

  32. 32.

    X.U. Rui-Bo, X.U. Xing-You, W. Ming-Yan, Y. Xu-Jie, W. Xin, L. La-De, M. Wei-Xing, Chin. J. Struc. Chem. 703 (2009)

  33. 33.

    J.N. Moorthy, N. Singhal, J. Org. Chem. 70, 1926 (2005)

  34. 34.

    R.A. Potts, D.L. Gaj, W.F. Schneider, N.S. Dean, J.W. Kampf, J.P. Oliver, Polyhedron 10, 1631 (1991)

  35. 35.

    W.R. Fawcett, G. Liu, T.E. Kessler, J. Phys. Chem. 97, 9293 (1993)

  36. 36.

    H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter, F. Aubke, J. Am. Chem. Soc. 114, 8972 (1992)

  37. 37.

    R.D. Swartz, M.K. Coggins, W. Kaminsky, J.A. Kovacs, J. Am. Chem. Soc. 133, 3954 (2011)

  38. 38.

    M. Liler, J. Chem. Soc. D 115 (1971)

  39. 39.

    K.H. Hopmann, J.D. Guo, F. Himo, Inorg. Chem. 46, 4850 (2007)

  40. 40.

    B. Yilmaz, H. Saracoglu, N. Calişkan, I. Yilmaz, A. Cukurovali, J. Chem. Cryst. 42, 897 (2012)

  41. 41.

    M.J. Dewar, J. Mol. Struct. Theochem 200, 301 (1989)

  42. 42.

    K. Nam, J. Gao, D.M. York, RNA 14, 1501 (2008)

  43. 43.

    F. Dehez, E. Pebay-Peyroula, C. Chipot, J. Am. Chem. Soc. 130, 12725 (2008)

  44. 44.

    S.J. Cho, C. Cui, J.Y. Lee, J.K. Park, S.B. Suh, J. Park, B.H. Kim, K.S. Kim, J. Org. Chem. 1997(62), 4068 (1997)

  45. 45.

    C.C. Wu, J.C. Jiang, I. Hahndorf, C. Chaudhuri, Y.T. Lee, H.C. Chang, J. Phys. Chem. A 104, 9556 (2000)

Download references

Acknowledgements

AAM acknowledges the University of Sharjah financial support of the competitive Grants 160-2142-029-P, 150-2142-017-P and 180-2142-059-P, Organometallic Research Group Grant RISE-046-2016 and Functionalized Nanomaterials Synthesis Lab Grant 151-0039.

Author information

Correspondence to Mahreen Arooj or Ahmed A. Mohamed.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shehadi, I., Abla, F., Wakefield, B. et al. Facile protic hydration of acetonitrile to protonated acetamide at oxygen mediated by chloroauric acid: insights from experimental and calculations. Res Chem Intermed 46, 593–607 (2020). https://doi.org/10.1007/s11164-019-03979-x

Download citation

Keywords

  • Acetonitrile
  • Hydration
  • Gold acid
  • Acetamide
  • Crystal structure