Optimization of the transfer hydrogenation reaction of acetophenone on Ni@MOF-5 nanoparticles using response surface methodology
- 23 Downloads
Abstract
In this study, the transfer hydrogenation reduction of acetophenone using supported nickel on MOF as catalyst was investigated. BBD and RSM were employed to investigate the effect of the experimental parameters such as Ni content, catalyst content, temperature, and reaction time. Optimum reaction conditions for the formation of 1-phenylethanol were 45% mol of Ni content, 0.11 g of catalyst, reaction temperature at 83 °C, and reaction time 90 min. The catalyst was characterized by FESEM, EDX, FT-IR, XRD, and H2-TPR techniques. The catalyst-free reaction phase was analyzed by AAS, and fortunately, no leaching of nickel was detected.
Keywords
Transfer hydrogenation Ni@MOF-5 Acetophenone Experimental designNotes
Acknowledgements
We gratefully acknowledge the funding support received for this project from the Mahshahr Branch, Islamic Azad University, Iran.
Supplementary material
References
- 1.O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003)CrossRefGoogle Scholar
- 2.J.L.C. Rowsell, O.M. Yaghi, Microporous Mesoporous Mater. 73, 3 (2004)CrossRefGoogle Scholar
- 3.Y. Liu, M. O’Keeffe, M.M.J. Treacy, O.M. Yaghi, Chem. Soc. Rev. 47, 4642 (2018)CrossRefPubMedGoogle Scholar
- 4.H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 1230444 (2013)CrossRefPubMedGoogle Scholar
- 5.A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 44, 6804 (2015)CrossRefPubMedGoogle Scholar
- 6.A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Nat. Rev. Mater. 1, 15018 (2016)CrossRefGoogle Scholar
- 7.H.-C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
- 8.P. Silva, S.M.F. Vilela, J.P.C. Tomé, F.A.A. Paz, Chem. Soc. Rev. 44, 6774 (2015)CrossRefPubMedGoogle Scholar
- 9.U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré, J. Mater. Chem. 16, 626 (2006)CrossRefGoogle Scholar
- 10.D. Wang, Z. Li, Res. Chem. Intermed. 43, 5169 (2017)CrossRefGoogle Scholar
- 11.D. Burrows Andrew, K. Cadman Laura, J. Gee William, H. Amer Hamzah, V. Knichal Jane, and S. Rochat, Tuning the Properties of Metal–Organic Frameworks by Post-synthetic Modification, ed. by H. García and S. Navalón. Metal–organic frameworks. Wiley (2018)Google Scholar
- 12.F. David, A. Sonia, P. Catherine, Angew. Chem. Int. Ed. 48, 7502 (2009)CrossRefGoogle Scholar
- 13.J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450 (2009)CrossRefGoogle Scholar
- 14.J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 43, 6011 (2014)CrossRefPubMedGoogle Scholar
- 15.H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276 (1999)CrossRefGoogle Scholar
- 16.S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129, 14176 (2007)CrossRefPubMedGoogle Scholar
- 17.T. Segakweng, N.M. Musyoka, J. Ren, P. Crouse, H.W. Langmi, Res. Chem. Intermed. 42, 4951 (2016)CrossRefGoogle Scholar
- 18.D. Wang, D. Astruc, Chem. Rev. 115, 6621 (2015)CrossRefPubMedGoogle Scholar
- 19.K. Vijayakrishna, K.T.P. Charan, K. Manojkumar, S. Venkatesh, N. Pothanagandhi, A. Sivaramakrishna, P. Mayuri, A.S. Kumar, B. Sreedhar, ChemCatChem 8, 1139 (2016)CrossRefGoogle Scholar
- 20.F. Alonso, P. Riente, M. Yus, Acc. Chem. Res. 44, 379 (2011)CrossRefPubMedGoogle Scholar
- 21.W. Zhen, B. Li, G. Lu, J. Ma, Chem. Commun. 51, 6556 (2015)CrossRefGoogle Scholar
- 22.H. Zhao, H. Song, L. Chou, Inorg. Chem. Commun. 15, 261 (2012)CrossRefGoogle Scholar
- 23.F.K. Olia, S. Sayyahi, N. Taheri, C. R. Chim. 20, 370 (2017)CrossRefGoogle Scholar
- 24.S. Sayyahi, S. Mozafari, S.J. Saghanezhad, Res. Chem. Intermed. 42, 511 (2016)CrossRefGoogle Scholar
- 25.A. Shouli, S. Menati, S. Sayyahi, C. R. Chim. 20, 765 (2017)CrossRefGoogle Scholar
- 26.R. Molinari, C. Lavorato, P. Argurio, Chem. Eng. J. 274, 307 (2015)CrossRefGoogle Scholar
- 27.B. Zhang, F. Xie, J. Yuan, L. Wang, B. Deng, Catal. Commun. 92, 46 (2017)CrossRefGoogle Scholar
- 28.C.A. McNamara, F. King, M. Bradley, Tetrahedron Lett. 45, 8239 (2004)CrossRefGoogle Scholar
- 29.H. Naeimi, V. Nejadshafiee, S. Masoum, Appl. Organomet. Chem. 29, 314 (2015)CrossRefGoogle Scholar
- 30.M. Ghiassee, M. Rezaei, F. Meshkani, S. Mobini, Res. Chem. Intermed. 45, 4501 (2019)CrossRefGoogle Scholar
- 31.M. Zhang, J. Guan, B. Zhang, D. Su, C.T. Williams, C. Liang, Catal. Lett. 142, 313 (2012)CrossRefGoogle Scholar
- 32.N.T.S. Phan, K.K.A. Le, T.D. Phan, Appl. Catal. A 382, 246 (2010)CrossRefGoogle Scholar
- 33.R.K. Sharma, Y. Monga, A. Puri, J. Mol. Catal. A Chem. 393, 84 (2014)CrossRefGoogle Scholar
- 34.Y. Jiang, T. Huang, Y. Xu, X. Li, Z. Qin, H. Ji, Chem. Eng. Technol. 41, 175 (2018)CrossRefGoogle Scholar
- 35.T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, Catal. Today 293–294, 89 (2017)CrossRefGoogle Scholar
- 36.D.V. Peron, V.L. Zholobenko, M.R. de la Rocha, M. Oberson de Souza, L.A. Feris, N.R. Marcilio, V.V. Ordomsky, A.Y. Khodakov, J. Mater. Sci. 54, 5399 (2019)CrossRefGoogle Scholar
- 37.A. Parmaliana, F. Arena, F. Frusteri, N. Giordano, J. Chem. Soc. Faraday Trans. 86, 2663 (1990)CrossRefGoogle Scholar
- 38.N. Chamkouri, A. Niazi, V. Zare-Shahabadi, Spectrochim Acta A Mol Biomol Spectrosc 156, 105 (2016)CrossRefPubMedGoogle Scholar