Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Catalytic role of Ti dopant in boehmite for the photodegradation of rhodamine B


Ti(IV) ions were introduced into the layered aluminum hydroxides via the precipitation of Al(NO3)3 solution and Ti(C2H5)4. Catalyst texture and structure were examined by physical techniques: X-ray diffraction, FTIR, SEM, TEM, nitrogen adsorption. Ti(IV) ions were isomorphously substituted for Al(III) species in the boehmite structure in spite of existence of a small amount of amorphous titanium oxide in some cases. The obtained catalysts have layered structure and oblate-shaped platelets with high external surface areas. They were tested for the degradation of rhodamine B (RhB) with air as an oxidant. The intra- and extra-lattice Ti(IV) ions expressed different reaction pathways for the photodegradation of RhB. While octahedrally coordinated Ti(IV) ions in hydroxide layers performed the fast de-ethylation/N-de-ethylation of RhB via consecutive steps, the extra-lattice titanium moieties underwent the slow destruction of chromophores of organic molecules. The Ti-doped boehmite catalysts gave a higher decolorization rate and a better activity in the photodegradation of RhB. The removal efficiency of RhB was obtained at 99% on Ti-intercalated layered hydroxide with molar ratio of Ti/Al = 1/5. The catalysts also expressed a good stability under reaction conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9


  1. 1.

    D. Ayodhya, G. Veerabhadram, Mater. Today. Energy 9, 83 (2018)

  2. 2.

    M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Ramana, W.M.A.W. Daud, J. Environ. Manag. 198, 78 (2017)

  3. 3.

    T. Zhou, D. Xu, M. Lu, P. Wang, J. Zhu, Res. Chem. Intermed. 44(10), 6431 (2018)

  4. 4.

    N. Tien Thao, H.T. Phuong Nga, N. Que Vo, H.D. Khanh Nguyen, J. Sci. Adv. Mater. Dev. 2(3), 317 (2017)

  5. 5.

    J. Li, W. Ma, C. Chen, J. Zhao, H. Zhu, X. Gao, J. Mol. Catal. A 261, 131 (2007)

  6. 6.

    M.N. Ha, L. Wang, Z. Zhao, Res. Chem. Intermed. 45(3), 1493 (2019)

  7. 7.

    J.W.H. Xu, W. Yan, Appl. Surf. Sci. 386, 1 (2016)

  8. 8.

    N. Tien Thao, D.T. Huong Ly, H.T. Phuong Nga, D. Minh Hoan, J. Env. Chem. Eng. 4, 4012 (2016)

  9. 9.

    D. Liu, W. Cui, J. Lin, Y. Xue, Y. Huang, J. Li, J. Zhang, Z. Liu, C. Tang, Catal. Commun. 57, 9 (2014)

  10. 10.

    L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430, 263 (2018)

  11. 11.

    X. Chena, J. Wei, R. Hou, Y. Liang, Z. Xie, Y. Zhu, X. Zhang, H. Wang, Appl. Catal. B 188, 342 (2016)

  12. 12.

    Y. Wang, Z. Mo, P. Zhang, C. Zhang, L. Han, R. Guo, H. Gou, X. Wei, R. Hu, Mater. Des. 99, 378 (2016)

  13. 13.

    T.-W. Kim, M. Park, H.Y. Kim, S.-J. Park, J. Solid State Chem. 239, 91 (2016)

  14. 14.

    M. Milanovića, Z. Obrenovicb, I. Stijepovica, L.M. Nikolic, Ceram. Int. 44, 12917 (2018)

  15. 15.

    M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, Adv. Powder Technol. 25(5), 1624 (2014)

  16. 16.

    B. Dindar, A.C. Guler, Environ. Nanotechnol. Monit. Manag. 10, 457 (2018)

  17. 17.

    Y. Zhou, J. Zhou, Surf. Sci. 606, 749 (2012)

  18. 18.

    P. Su, C. Fan, H. Yu, W. Wang, X. Jia, Q. Rao, C. Fu, D. Zhang, B. Huang, C. Pan, A. Zheng, Y. Sun, Mol. Catal. 475, 110460 (2019)

  19. 19.

    A. Kubala-Kukus, D. Banas, I. Stabrawa, K. Szary, D. Sobota, U. Majewska, J. Wudarczyk-Mocko, J. Braziewicz, M. Pajek, Spectrochim. Acta Part B 145, 43 (2018)

  20. 20.

    G. Ma, F. Liu, S. Wang, Z. Dang, J. Zhang, X. Fu, M. Ho, Mater. Sci. Semicond. Proces. 100, 61 (2019)

  21. 21.

    E. Kumar, A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpaa, Chem. Eng. J. 241, 443 (2014)

  22. 22.

    M.G. Alalm, A. Tawfik, S. Ookawara, J. Env. Chem. Eng. 4, 1929 (2016)

  23. 23.

    Y.W. Yuxiang, Z.X. Zhao, X. Yang, X. Li, Z. Chen, L. Yang, L. Zhu, T. Gao, Z. Sha, Surf. Coat. Technol. 281, 89 (2015)

  24. 24.

    S. Xia, F. Liu, Z. Ni, W. Shi, J. Xue, P. Qian, Appl. Catal. B 144, 570 (2014)

  25. 25.

    X. Hou, W. Shen, X. Huang, Z. Ai, L. Zhang, J. Hazard. Mater. 308, 67 (2016)

  26. 26.

    L. Sakwises, P. Pisitsak, H. Manuspiya, S. Ummartyotin, Results Phys. 7, 1751 (2017)

  27. 27.

    L. Mohapatra, K.M. Parida, Sep. Purif. Technol. 91, 73 (2012)

  28. 28.

    H. Fu, L. Zhang, W. Yao, Y. Zhu, Appl. Catal. B 66, 100 (2006)

  29. 29.

    F. Chen, J. Zhao, H. Hidaka, Int. J. Photoenergy 5, 209 (2003)

  30. 30.

    S. Rasalingam, C.-M. Wu, R.T. Koodal, A.C.S. Appl, Mater. Interfaces 7(7), 4368 (2015)

  31. 31.

    M. Fan, S. Hu, B. Ren, J. Wang, X. Jing, Powder Technol. 235, 27 (2013)

  32. 32.

    L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, Catal. Commun. 30, 14 (2013)

  33. 33.

    M. Fan, S. Hu, B. Ren, J. Wang, X. Jing, Powder Technol. 235, 27 (2013)

Download references


This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 104.05-2017.04.

Author information

Correspondence to Nguyen Tien Thao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thao, N.T., Hoan, D.M. Catalytic role of Ti dopant in boehmite for the photodegradation of rhodamine B. Res Chem Intermed 46, 429–443 (2020).

Download citation


  • Photodegradation
  • Layered hydroxides
  • Boehmite
  • Promotion
  • Ti dopant