Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 429–443 | Cite as

Catalytic role of Ti dopant in boehmite for the photodegradation of rhodamine B

  • Nguyen Tien ThaoEmail author
  • Dinh Minh Hoan
Article
  • 30 Downloads

Abstract

Ti(IV) ions were introduced into the layered aluminum hydroxides via the precipitation of Al(NO3)3 solution and Ti(C2H5)4. Catalyst texture and structure were examined by physical techniques: X-ray diffraction, FTIR, SEM, TEM, nitrogen adsorption. Ti(IV) ions were isomorphously substituted for Al(III) species in the boehmite structure in spite of existence of a small amount of amorphous titanium oxide in some cases. The obtained catalysts have layered structure and oblate-shaped platelets with high external surface areas. They were tested for the degradation of rhodamine B (RhB) with air as an oxidant. The intra- and extra-lattice Ti(IV) ions expressed different reaction pathways for the photodegradation of RhB. While octahedrally coordinated Ti(IV) ions in hydroxide layers performed the fast de-ethylation/N-de-ethylation of RhB via consecutive steps, the extra-lattice titanium moieties underwent the slow destruction of chromophores of organic molecules. The Ti-doped boehmite catalysts gave a higher decolorization rate and a better activity in the photodegradation of RhB. The removal efficiency of RhB was obtained at 99% on Ti-intercalated layered hydroxide with molar ratio of Ti/Al = 1/5. The catalysts also expressed a good stability under reaction conditions.

Keywords

Photodegradation Layered hydroxides Boehmite Promotion Ti dopant 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 104.05-2017.04.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D. Ayodhya, G. Veerabhadram, Mater. Today. Energy 9, 83 (2018)Google Scholar
  2. 2.
    M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Ramana, W.M.A.W. Daud, J. Environ. Manag. 198, 78 (2017)CrossRefGoogle Scholar
  3. 3.
    T. Zhou, D. Xu, M. Lu, P. Wang, J. Zhu, Res. Chem. Intermed. 44(10), 6431 (2018)CrossRefGoogle Scholar
  4. 4.
    N. Tien Thao, H.T. Phuong Nga, N. Que Vo, H.D. Khanh Nguyen, J. Sci. Adv. Mater. Dev. 2(3), 317 (2017)Google Scholar
  5. 5.
    J. Li, W. Ma, C. Chen, J. Zhao, H. Zhu, X. Gao, J. Mol. Catal. A 261, 131 (2007)CrossRefGoogle Scholar
  6. 6.
    M.N. Ha, L. Wang, Z. Zhao, Res. Chem. Intermed. 45(3), 1493 (2019)CrossRefGoogle Scholar
  7. 7.
    J.W.H. Xu, W. Yan, Appl. Surf. Sci. 386, 1 (2016)CrossRefGoogle Scholar
  8. 8.
    N. Tien Thao, D.T. Huong Ly, H.T. Phuong Nga, D. Minh Hoan, J. Env. Chem. Eng. 4, 4012 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Liu, W. Cui, J. Lin, Y. Xue, Y. Huang, J. Li, J. Zhang, Z. Liu, C. Tang, Catal. Commun. 57, 9 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430, 263 (2018)CrossRefGoogle Scholar
  11. 11.
    X. Chena, J. Wei, R. Hou, Y. Liang, Z. Xie, Y. Zhu, X. Zhang, H. Wang, Appl. Catal. B 188, 342 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Z. Mo, P. Zhang, C. Zhang, L. Han, R. Guo, H. Gou, X. Wei, R. Hu, Mater. Des. 99, 378 (2016)CrossRefGoogle Scholar
  13. 13.
    T.-W. Kim, M. Park, H.Y. Kim, S.-J. Park, J. Solid State Chem. 239, 91 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Milanovića, Z. Obrenovicb, I. Stijepovica, L.M. Nikolic, Ceram. Int. 44, 12917 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Hadnadjev-Kostic, T. Vulic, R. Marinkovic-Neducin, Adv. Powder Technol. 25(5), 1624 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Dindar, A.C. Guler, Environ. Nanotechnol. Monit. Manag. 10, 457 (2018)Google Scholar
  17. 17.
    Y. Zhou, J. Zhou, Surf. Sci. 606, 749 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Su, C. Fan, H. Yu, W. Wang, X. Jia, Q. Rao, C. Fu, D. Zhang, B. Huang, C. Pan, A. Zheng, Y. Sun, Mol. Catal. 475, 110460 (2019)CrossRefGoogle Scholar
  19. 19.
    A. Kubala-Kukus, D. Banas, I. Stabrawa, K. Szary, D. Sobota, U. Majewska, J. Wudarczyk-Mocko, J. Braziewicz, M. Pajek, Spectrochim. Acta Part B 145, 43 (2018)CrossRefGoogle Scholar
  20. 20.
    G. Ma, F. Liu, S. Wang, Z. Dang, J. Zhang, X. Fu, M. Ho, Mater. Sci. Semicond. Proces. 100, 61 (2019)CrossRefGoogle Scholar
  21. 21.
    E. Kumar, A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpaa, Chem. Eng. J. 241, 443 (2014)CrossRefGoogle Scholar
  22. 22.
    M.G. Alalm, A. Tawfik, S. Ookawara, J. Env. Chem. Eng. 4, 1929 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.W. Yuxiang, Z.X. Zhao, X. Yang, X. Li, Z. Chen, L. Yang, L. Zhu, T. Gao, Z. Sha, Surf. Coat. Technol. 281, 89 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Xia, F. Liu, Z. Ni, W. Shi, J. Xue, P. Qian, Appl. Catal. B 144, 570 (2014)CrossRefGoogle Scholar
  25. 25.
    X. Hou, W. Shen, X. Huang, Z. Ai, L. Zhang, J. Hazard. Mater. 308, 67 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Sakwises, P. Pisitsak, H. Manuspiya, S. Ummartyotin, Results Phys. 7, 1751 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Mohapatra, K.M. Parida, Sep. Purif. Technol. 91, 73 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Fu, L. Zhang, W. Yao, Y. Zhu, Appl. Catal. B 66, 100 (2006)CrossRefGoogle Scholar
  29. 29.
    F. Chen, J. Zhao, H. Hidaka, Int. J. Photoenergy 5, 209 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Rasalingam, C.-M. Wu, R.T. Koodal, A.C.S. Appl, Mater. Interfaces 7(7), 4368 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Fan, S. Hu, B. Ren, J. Wang, X. Jing, Powder Technol. 235, 27 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, Catal. Commun. 30, 14 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Fan, S. Hu, B. Ren, J. Wang, X. Jing, Powder Technol. 235, 27 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryVietnam National University HanoiHanoiVietnam

Personalised recommendations