Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 385–407 | Cite as

Magnetic biochar derived from sewage sludge of concentrated natural rubber latex (CNRL) for the removal of Al3+ and Cu2+ ions from wastewater

  • Khamphe Phoungthong
  • Thitipone SuwunwongEmail author
Article
  • 90 Downloads

Abstract

In order to reduce sewage sludge of concentrated natural rubber latex (CNRL) and transform it into a valuable material for efficient removal of Al3+ and Cu2+ ions from wastewater, magnetic biochar was prepared. In this work, sewage sludge from CNRL was pyrolyzed at various temperatures (300–700 °C) to assess the effects of pyrolysis temperature on the efficiency of magnetic biochar in removing Al3+ and Cu2+ ions from an aqueous medium. Effect of the chemical composition of sewage sludge on the biochar characteristic was evaluated. Sewage sludge is mainly organic matter. The mineral elements silicon (Si), phosphorus (P), sulfur (S) and calcium (Ca) were also observed in the sewage sludge. With increasing pyrolysis temperature, the contents of P and potassium (K) increased. The inorganic metals chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and lead (Pb) were present in small quantities. Pyrolysis temperatures 400–500 °C provided good quality magnetic biochar, while with the higher 700 °C pyrolysis temperature, specific surface area and pore volume decreased. The prepared biochar had combined meso- and macro-porous structure. Isotherms of Type II were indicating multilayer adsorption on porous biochar. The pseudo-second-order kinetic models described well Al3+ and Cu2+ adsorption onto magnetic biochar. The leaching test of magnetic biochar shows the releasing of K and Zinc (Zn) which can effect on the sorption of Al3+ and Cu2+. The binding mechanism between magnetic biochar and Al3+/Cu2+ involved surface complexation, ion exchange and cation‒π interaction.

Graphic abstract

Keywords

Sewage sludge Concentrated natural rubber latex Waste management Biochar Magnetic biochar Adsorption Kinetic Leaching test 

List of symbols

BET

Brunauer–Emmett–Teller

BS

Biochar from sewage sludge

CNRL

Concentrated natural rubber latex

Co

Initial dye concentration (mg/L)

Ce

Equilibrium concentration of dye (mg/L)

qe

Sorbed dye amount per gram of sorbent at equilibrium (mg/g)

qe,cal

Calculated amount of dye sorbed per gram of sorbent at equilibrium (mg/g)

qe,exp

Experimental amount of dye sorbed per gram of sorbent at equilibrium (mg/g)

qt

Sorbed dye amount per gram of sorbent at time t (mg/g)

k1

Pseudo-first-order rate constant (1/min)

k2

Pseudo-second-order rate constant (g/mg min)

MBS

Magnetic biochar from sewage sludge

R2

Correlation coefficient

SSE

The sum of squares error

t

Time (min)

Notes

Acknowledgements

This work was supported by the grants from the Faculty of Environmental Management, Prince of Songkla University (No. ENV6103).

Supplementary material

11164_2019_3956_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (PDF 2798 kb)

References

  1. 1.
    Q. Yang, Z. Li, X. Lu, Q. Duan, L. Huang, J. Bi, Sci. Total Environ. 642, 690 (2018)PubMedGoogle Scholar
  2. 2.
    H.-S. Kim, Y.-M. Um, M.-K. Shin, H.-J. Park, J.-D. Lee, J.-Y. Kim, H.-M. Gwak, J.-H. Hyeon, J.-Y. Son, K.-S. Kim, R. Sachan, U. De, Y.-J. Kang, B.-M. Lee, Toxicol. Lett. 229, S103 (2014)Google Scholar
  3. 3.
    B.L. Abidemi, O.A. James, A.T. Oluwatosin, O.J. Akinropo, U.D. Oraeloka, A.E. Racheal, Int. J. Chem. Biomol. Sci. 4, 69 (2018)Google Scholar
  4. 4.
    D. Maity, T. Govindaraju, Chem. Commun. 46, 4499 (2010)Google Scholar
  5. 5.
    M. Parhoudeh, S. Inaloo, M. Zahmatkeshan, Z. Seratishirazi, S. Haghbin, Iran. J. Child Neurol. 12, 66 (2018)PubMedPubMedCentralGoogle Scholar
  6. 6.
    V. Desai, S.G. Kaler, Am. J. Clin. Nutr. 88, 855S (2008)PubMedGoogle Scholar
  7. 7.
    M.I. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y.S. Ok, X. Cao, Crit. Rev. Environ. Sci. Technol. 46, 406 (2016)Google Scholar
  8. 8.
    P. Lodeiro, Á. Gudiña, L. Herrero, R. Herrero, M.E. Sastre de Vicente, J. Hazard. Mater. 178, 861 (2010)PubMedGoogle Scholar
  9. 9.
    K.W. Jung, S.Y. Lee, J.W. Choi, Y.J. Lee, Chem. Eng. J. 369, 529 (2019)Google Scholar
  10. 10.
    T. Huang, L. Zhou, L. Liu, M. Xia, Waste Manag. 75, 226 (2018)PubMedGoogle Scholar
  11. 11.
    D. Krishna Veni, P. Kannan, T.N. Jebakumar Immanuel Edison, A. Senthilkumar, Waste Manag. 68, 752 (2017)PubMedGoogle Scholar
  12. 12.
    K. Phoungthong, H. Zhang, L.M. Shao, P.J. He, J. Mater. Cycles Waste Manag. 20, 2089 (2018)Google Scholar
  13. 13.
    M.A. Sanchez-Monedero, M.L. Cayuela, A. Roig, K. Jindo, C. Mondini, N. Bolan, Bioresour. Technol. 247, 1155 (2018)PubMedGoogle Scholar
  14. 14.
    L. Li, D. Zou, Z. Xiao, X. Zeng, L. Zhang, L. Jiang, A. Wang, D. Ge, G. Zhang, F. Liu, J. Clean. Prod. 210, 1324 (2019)Google Scholar
  15. 15.
    K.M. Poo, E.B. Son, J.S. Chang, X. Ren, Y.J. Choi, K.J. Chae, J. Environ. Manag. 206, 364 (2018)Google Scholar
  16. 16.
    S.H. Ho, Y. di Chen, Z. kai Yang, D. Nagarajan, J.S. Chang, N.Q. Ren, Bioresour. Technol. 246, 142 (2017)PubMedGoogle Scholar
  17. 17.
    N.A. Qambrani, M.M. Rahman, S. Won, S. Shim, C. Ra, Renew. Sustain. Energy Rev. 79, 255 (2017)Google Scholar
  18. 18.
    F.M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.Y. Wang, E. Gidarakos, J. Environ. Manag. 96, 35 (2012)Google Scholar
  19. 19.
    T. Qian, Q. Yang, D.C.F. Jun, F. Dong, Y. Zhou, Chem. Eng. J. 359, 1573 (2019)Google Scholar
  20. 20.
    X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Bioresour. Technol. 102, 8877 (2011)PubMedGoogle Scholar
  21. 21.
    M. Idrees, S. Batool, T. Kalsoom, S. Yasmeen, A. Kalsoom, S. Raina, Q. Zhuang, J. Kong, J. Environ. Manag. 213, 109 (2018)Google Scholar
  22. 22.
    N. Bombuwala Dewage, A.S. Liyanage, C.U. Pittman, D. Mohan, T. Mlsna, Bioresour. Technol. 263, 258 (2018)PubMedGoogle Scholar
  23. 23.
    Y. Chen, B. Wang, J. Xin, P. Sun, D. Wu, Ecotoxicol. Environ. Saf. 164, 440 (2018)PubMedGoogle Scholar
  24. 24.
    S.A. Baig, J. Zhu, N. Muhammad, T. Sheng, X. Xu, Biomass Bioenergy 71, 299 (2014)Google Scholar
  25. 25.
    C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Environ. Sci. Pollut. Res. 26, 8902 (2019)Google Scholar
  26. 26.
    P. Alam, K. Ahmade, Spec. Issue Int. J. Sustain. Dev. Green Econ. 2, 165 (2013)Google Scholar
  27. 27.
    D. Pokhrel, T. Viraraghavan, Waste Manag. 25, 555 (2005)PubMedGoogle Scholar
  28. 28.
    M. Kacprzak, E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, Å. Almås, B.R. Singh, Environ. Res. 156, 39 (2017)PubMedGoogle Scholar
  29. 29.
    A.R. Pendashteh, F. Asghari Haji, N. Chaibakhsh, M. Yazdi, M. Pendashteh, J. Mater. Environ. Sci. 8, 4015 (2017)Google Scholar
  30. 30.
    D. Tanikawa, T. Watari, T.C. Mai, M. Fukuda, K. Syutsubo, N.B. Nguyen, T. Yamaguchi, Environ (Technol, United Kingdom, 2018)Google Scholar
  31. 31.
    K. Vijayaraghavan, D. Ahmad, A.Y.A. Yazid, Desalination 219, 214 (2008)Google Scholar
  32. 32.
    K. Saritpongteeraka, S. Chaiprapat, Bioresour. Technol. 99, 8987 (2008)PubMedGoogle Scholar
  33. 33.
    L. Tang, J. Yu, Y. Pang, G. Zeng, Y. Deng, J. Wang, X. Ren, S. Ye, B. Peng, H. Feng, Chem. Eng. J. 336, 160 (2018)Google Scholar
  34. 34.
    H. Yuan, T. Lu, Y. Wang, Y. Chen, T. Lei, Geoderma 267, 17 (2016)Google Scholar
  35. 35.
    S.N. Guilhen, O. Mašek, N. Ortiz, J.C. Izidoro, D.A. Fungaro, Biomass Bioenergy 122, 381 (2019)Google Scholar
  36. 36.
    T. Chen, Y. Zhang, H. Wang, W. Lu, Z. Zhou, Y. Zhang, L. Ren, Bioresour. Technol. 164, 47 (2014)PubMedGoogle Scholar
  37. 37.
    D. Kołodyńska, R. Wnetrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki, Chem. Eng. J. 197, 295 (2012)Google Scholar
  38. 38.
    D. Kołodyńska, J. Bąk, Sep. Sci. Technol. 53, 1045 (2018)Google Scholar
  39. 39.
    J. Hoslett, H. Ghazal, D. Ahmad, H. Jouhara, Sci. Total Environ. 673, 777 (2019)PubMedGoogle Scholar
  40. 40.
    H. Wang, Y. Liu, J. Ifthikar, L. Shi, A. Khan, Z. Chen, Z. Chen, Bioresour. Technol. 256, 269 (2018)PubMedGoogle Scholar
  41. 41.
    H. Xu, X. Zhang, Y. Zhang, Environ. Technol. 39, 1470 (2018)PubMedGoogle Scholar
  42. 42.
    M.A. Mahmoud, M.M. El-Halwany, J. Chromatograp. Sep. Tech. 5, 238 (2014)Google Scholar
  43. 43.
    M.A. Mahmoud, Beni-Suef Univ. J. Basic Appl. Sci. 4, 142 (2015)Google Scholar
  44. 44.
    J.P. Simonin, Chem. Eng. J. 300, 254 (2016)Google Scholar
  45. 45.
    E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, J. Anal. Appl. Pyrolysis 101, 72 (2013)Google Scholar
  46. 46.
    A. Bogusz, P. Oleszczuk, R. Dobrowolski, Environ. Geochem. Health (2017).  https://doi.org/10.1007/s10653-017-0036-1 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    C. Adam, B. Peplinski, M. Michaelis, G. Kley, F.G. Simon, Waste Manag. 29, 1122 (2009)PubMedGoogle Scholar
  48. 48.
    A. Trubetskaya, P.A. Jensen, A.D. Jensen, M. Steibel, H. Spliethoff, P. Glarborg, F.H. Larsen, Biomass Bioenerg. 86, 76 (2016)Google Scholar
  49. 49.
    M.K. Hossain, V. Strezov Vladimir, K.Y. Chan, A. Ziolkowski, P.F. Nelson, J. Environ. Manag. 92, 223 (2011)Google Scholar
  50. 50.
    M. Essandoh, B. Kunwar, C.U. Pittman, D. Mohan, T. Mlsna, Chem. Eng. J. 265, 219 (2015)Google Scholar
  51. 51.
    T. Liu, B. Liu, W. Zhang, Polish J. Environ. Stud. 23, 271 (2014)Google Scholar
  52. 52.
    S. Fan, H. Li, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Res. Chem. Intermed. 44, 135 (2018)Google Scholar
  53. 53.
    J. Rouquerol, D. Avnir, C.W. Fairbridge, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)Google Scholar
  54. 54.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 9 (2015)Google Scholar
  55. 55.
    X.D. Song, X.Y. Xue, D.Z. Chen, P.J. He, X.H. Dai, Chemosphere 109, 213 (2014)PubMedGoogle Scholar
  56. 56.
    A. Dobermann, T.H. Fairhurst, International Rice Research Institute and Potash and Phosphate Institute, Los Baños (Philippines), Singapore, 2000)Google Scholar
  57. 57.
    Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8, 2209 (1996)Google Scholar
  58. 58.
    A.L. Willis, N.J. Turro, S. O’Brien, Chem. Mater. 17, 5970 (2005)Google Scholar
  59. 59.
    Q. Zhao, S. Zhang, X. Zhang, L. Lei, W. Ma, C. Ma, L. Song, J. Chen, B. Pan, B. Xing, Environ. Sci. Technol. 51, 13659 (2017)PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental ManagementPrince of Songkla UniversitySongkhlaThailand
  2. 2.Center of Excellence on Hazardous Substance Management (HSM)BangkokThailand
  3. 3.Center of Chemical Innovation for Sustainability (CIS)Mae Fah Luang UniversityChiang RaiThailand
  4. 4.School of ScienceMae Fah Luang UniversityChiang RaiThailand

Personalised recommendations