Advertisement

Regeneration of the exhausted mesoporous Cu/SBA-15-[N] for simultaneous adsorption–oxidation of hydrogen sulfide and phosphine

  • 43 Accesses

Abstract

Previous studies showed that Cu/SBA-15-[N] had an excellent simultaneous adsorption–oxidation performance of hydrogen sulfide (H2S) and hydrogen phosphide (PH3), but the regeneration of deactivated Cu/SBA-15-[N] is still a difficult problem. In this work, acid pickling treatment (Rm-A), water washing (Ram-W), calcination (Rm-C) and acid pickling after calcining (Rm-CA) methods were used to study the regeneration performance of the deactivated Cu/SBA-15-[N]. The results showed that the most effective method was Rm-CA. Under optimal regeneration conditions (calcination temperature = 450 °C, HNO3 mass fraction = 13%), the sulfur capacity (23.73 mgS/g) and phosphorus capacity (100.49 mgP/g) of regenerated Cu/SBA-15-[N] were close to the fresh Cu/SBA-15-[N] (47.38 mgS/g, 136.42 mgP/g). The in situ IR indicated that the surface products of the sorbent were mainly in the form of oxides after calcination, these substances are transformed into the corresponding active components under the action of nitric acid. BET, XRD and TGA results indicated that the regeneration process did not destroy the deactivated Cu/SBA-15-[N] structure, but could change the surface of the group composition. The results of XPS reveal the copper content in different samples. After 3 times regeneration, the sulfur capacity and the phosphorus capacity of regenerated Cu/SBA-15-[N] could reach to 20.67 mgS/g and 88.43 mgP/g, which indicated that the Rm-CA method had good stability for the recovery of adsorption activity. This study provided an effective regeneration method that could also reduce the environmental hazards of deactivated Cu/SBA-15-[N].

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    K.A. Brenneman, R.A. James, E.A. Gross, D.C. Dorman, Toxicol. Pathol. 28, 326 (2000)

  2. 2.

    D.C. Dorman, Toxicol. Sci. 65, 18 (2002)

  3. 3.

    S. Gullane, O. Hamdaoui, Desalin. Water Treat. 3994, 1 (2015)

  4. 4.

    J. Saiz, E. Bringas, I. Ortiz, Ind. Eng. Chem. Res. 53, 18928 (2014)

  5. 5.

    S. Garg, V.C. Srivastava, S. Singh, T.K. Mandal, Int. J. Chem. React. Eng. 13, 437 (2015)

  6. 6.

    H. Yan, W. Chen, G. Liao, X. Li, S. Ma, L. Li, Sep. Purif. Technol. 159, 1 (2016)

  7. 7.

    S. Srivastava, P. Mohanty, J.K. Parikh, A.K. Dalai, S.S. Amritphale, A.K. Khare, Cuihua Xuebao/Chin. J. Catal. 36, 933 (2015)

  8. 8.

    X. Duan, W. Liu, L. Yue, W. Fu, M.N. Ha, J. Li, G. Lu, Dalt. Trans. 44, 17381 (2015)

  9. 9.

    E.I. Basaldella, J.C. Tara, G.A. Armenta, M.E.P. Iglesias, J. Porous Mater. 14, 273 (2007)

  10. 10.

    B. Levasseur, A.M. Ebrahim, T.J. Bandosz, J. Colloid Interface Sci. 377, 347 (2012)

  11. 11.

    S. Li, K. Li, J. Hao, P. Ning, L. Tang, X. Sun, Chem. Eng. J. 302, 69 (2016)

  12. 12.

    T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Microporous Mesoporous Mater. 116, 504 (2008)

  13. 13.

    X. Song, S. Li, K. Li, Microporous Mesoporous Mater. 2017, S1387181117306571 (2017)

  14. 14.

    F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M.J. Sanchez-Montero, C. Izquierdo, Microporous Mesoporous Mater. 202, 259 (2015)

  15. 15.

    M. Mureddu, I. Ferino, E. Rombi, M.G. Cutrufello, P. Deiana, A. Ardu, A. Musinu, G. Piccaluga, C. Cannas, Fuel 102, 691 (2012)

  16. 16.

    L. Wu, F. Ye, D. Lei D, Pet. Sci. (2018)

  17. 17.

    S.Y. Jung, S.J. Lee, T.J. Lee, Catal. Today 111(3–4), 217 (2006)

  18. 18.

    S. Lata, P.K. Singh, S.R. Samadder, Int. J. Environ. Sci. Technol. 12, 1461 (2015)

  19. 19.

    Y. Peng, J. Li, X. Huang, X. Li, W. Su, X. Sun, D. Wang, J. Hao, Environ. Sci. Technol. 48, 4515 (2014)

  20. 20.

    D. Zhao, Science 279, 548 (1998)

  21. 21.

    R. Zubrzycki, T. Ressler, Microporous Mesoporous Mater. 214, 8 (2015)

  22. 22.

    C. Pirez, J.C. Morin, J.C. Manayil, A.F. Lee, K. Wilson, Microporous Mesoporous Mater. 271, 196 (2018)

  23. 23.

    M. Harisekhar, V. Pavan, S. Shanthi, J. Chem. Technol. Biotechnol. 90(10), 1906 (2015)

  24. 24.

    S. Karthikeyan, M.P. Pachamuthu, M.A. Isaacs, Appl. Catal. B 199, 323 (2016)

  25. 25.

    W. Shen, D. Mao, Z. Luo, RSC Adv. 7(44), 27689 (2017)

  26. 26.

    L. Wang, J.K. Yao, Z. Wang, H.J. Jiao, J. Qi, X.J. Yong, D.H. Liu, Plasma Sci. Technol. 20(10), 101001 (2018)

  27. 27.

    E. Da, A. Sayari, Desalination 277(1), 54 (2011)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41807373, 21667015, and 51708266), and National Key R&D Program of China (2018YFC0213400).

Author information

Correspondence to Chi Wang or Ping Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Li, K., Li, S. et al. Regeneration of the exhausted mesoporous Cu/SBA-15-[N] for simultaneous adsorption–oxidation of hydrogen sulfide and phosphine. Res Chem Intermed 46, 329–346 (2020) doi:10.1007/s11164-019-03953-7

Download citation

Keywords

  • Cu/SBA-15-[N]
  • Regeneration conditions
  • Acid pickling after calcining (Rm-CA)
  • Simultaneous adsorption–oxidation
  • H2S and PH3