Advertisement

A photocatalytic comparison study between tin complex and carboxylic acid derivatives of porphyrin/TiO2 composites

  • Rangaraju Satish Kumar
  • Hyorim Kim
  • Naveen Mergu
  • Young-A SonEmail author
Article
  • 14 Downloads

Abstract

We synthesized a novel dihydroxotin(IV) porphyrin complex with full structural confirmation. The tin complex further converted to TiO2 composite (PR-2–TiO2) and photodegradation of methylene blue property compared with carboxylic-anchored porphyrin photocatalyst (PR-3–TiO2), basic porphyrin photocatalyst (PR-1–TiO2) and bare TiO2. PR-1–TiO2 showed slight photocatalytic activity, which was better than that of bare TiO2. The photocatalytic performances of tin-porphyrin (PR-2–TiO2) and carboxylic anchor porphyrin (PR-3–TiO2) were comparable, and tin-porphyrin catalyst showed similar stability in their reusability test result in comparison with carboxylic-anchored porphyrin catalyst. Finally, we showed a plausible structure for the tin porphyrin complex between the axial –OH ligand and TiO2 and a suitable mechanism with theoretical comparison for the photocatalytic process.

Graphic abstract

Keywords

Dihydroxotin(IV) porphyrin Photocatalytic Axially coordinated Visible light Photodegradation 

Notes

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant No. NRF-2017R1E1A1A01074266). This work was supported by the Industrial Fundamental Technology Development Program (10076350) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.

References

  1. 1.
    T.L. Thompson, J.T. Yates Jr., Chem. Rev. 106, 4428 (2006)CrossRefGoogle Scholar
  2. 2.
    X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  3. 3.
    X.B. Chen, C. Burda, J. Am. Chem. Soc. 130, 5018 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard. Mater. 168, 253 (2009)CrossRefGoogle Scholar
  5. 5.
    G. Mele, R.D. Sole, G. Vasapollo, E.G. López, L. Palmisano, M. Schiavello, J. Catal. 217, 334 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Wang, J. Li, Y.P. Xie, C.W. Li, G.X. Han, L.Q. Zhang, R. Xu, X.D. Zhang, J. Environ. Manag. 91, 677 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Chu, X. Zheng, F. Kong, G. Wu, L. Luo, Y. Guo, H. Liu, Y. Wang, H. Yu, Z. Zou, Mater. Chem. Phys. 129, 1184 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Hagfeld, G. Boschlo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  9. 9.
    H.Y. Huang, X.T. Gu, J.H. Zhou, K. Ji, H.L. Liu, Y.Y. Feng, Catal. Commun. 11, 58 (2009)CrossRefGoogle Scholar
  10. 10.
    P. Moro, M.P. Donzello, C. Ercolani, F. Monacelli, G. Moretti, J. Photochem. Photobiol. A 220, 77 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, A. Li, Z.H. Huang, L.N. Wang, F. Kang, Nanomaterials 6, 51 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Morita, K. Takijiri, K. Sakai, H. Ozawa, Dalton Trans. 46, 15181 (2017)CrossRefGoogle Scholar
  13. 13.
    D.G. Whitten, J.C.N. Yau, F.A. Carroll, J. Am. Chem. Soc. 93, 2291 (1971)CrossRefGoogle Scholar
  14. 14.
    D.P. Arnold, J. Blok, Coord. Chem. Rev. 248, 299 (2004)CrossRefGoogle Scholar
  15. 15.
    H.J. Kim, N.K. Shee, K.-M. Park, H.-J. Kim, Inorg. Chim. Acta 488, 1 (2019)CrossRefGoogle Scholar
  16. 16.
    W. Kim, J. Park, H.J. Jo, H.-J. Kim, W. Choi, J. Phys. Chem. C 112, 491 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Wang, I. Tabata, K. Hisada, T. Hori, J. Porphyr. Phthalocyanines 7, 199 (2003)CrossRefGoogle Scholar
  18. 18.
    G.D. Fallon, M.A.-P. Lee, S.J. Langford, P.J. Nichols, Org. Lett. 4, 1895 (2002)CrossRefGoogle Scholar
  19. 19.
    M.Y. Duan, J. Li, G. Mele, C. Wang, X.F. Lu, V. Giuseppe, F.X. Zhang, J. Phys. Chem. C 114, 7857 (2010)CrossRefGoogle Scholar
  20. 20.
    K.S. Min, R.S. Kumar, J.H. Lee, K.S. Kim, S.G. Lee, Y.-A. Son, Dyes Pigments 160, 37 (2019)CrossRefGoogle Scholar
  21. 21.
    K.S. Min, R. Manivannan, Y.-A. Son, Dyes Pigments 162, 8 (2019)CrossRefGoogle Scholar
  22. 22.
    H. Kim, R. Manivannan, G. Heo, J.W. Ryu, Y.-A. Son, Res. Chem. Intermed. 45, 1 (2019)CrossRefGoogle Scholar
  23. 23.
    R.S. Kumar, H. Jeong, J. Jeong, R.K. Chitumalla, M.J. Ko, K.S. Kumar, J. Jange, Y.-A. Son, RSC Adv. 6, 41294 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Jeong, R.S. Kumar, N. Mergu, Y.-A. Son, Inorg. Chim. Acta 469, 453 (2018)CrossRefGoogle Scholar
  25. 25.
    M.A. Ahmed, Z.M. Abou-Gamra, H.A.A. Medien, M.A. Hamza, J. Photochem. Photobiol. B 176, 25 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, RSC Adv. 4, 36959 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Huang, Y. Lv, Q. Zhou, S. Kanga, Q. Xl, J. Mu, Ceram. Int. 40, 7093 (2014)CrossRefGoogle Scholar
  28. 28.
    G.M. Bancroft, I. Adams, H. Lampe, T.K. Sham, J. Electron Spectrosc. Relat. Phenom. 9, 191 (1976)CrossRefGoogle Scholar
  29. 29.
    G.T. Baronetti, S.R. de Miguel, O.A. Scelza, A.A. Castro, Appl. Catal. 24, 109 (1986)CrossRefGoogle Scholar
  30. 30.
    G. Mele, R.D. Sole, G. Vasapollo, G. Marcı, V. GarcıaLopez, L. Palmisano, J.M. Coronado, M.D.H. Alonso, C. Malitesta, M.R. Gualcito, J. Phys. Chem. B 109, 12347 (2005)CrossRefGoogle Scholar
  31. 31.
    J. Yu, G. Dai, Q. Xiang, M. Jaroniec, J. Mater. Chem. 21, 1049 (2011)CrossRefGoogle Scholar
  32. 32.
    F. Chen, Y. Cao, D. Jia, Chem. Eng. J. 234, 223 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Pouretedal, M. Keshavarz, Int. J. Phys. Sci. 6, 6268 (2011)Google Scholar
  34. 34.
    Z.-X. Li, B.-L. Yang, Y.-F. Jiang, C.-Y. Yu, L. Zhang, Cryst. Growth Des. 18, 979 (2018)CrossRefGoogle Scholar
  35. 35.
    H.J. Jo, S.H. Jung, H.-J. Kim, Bull. Korean Chem. Soc. 25, 1869 (2004)CrossRefGoogle Scholar
  36. 36.
    C.J.P. Monteiro, M.M. Pereira, M.E. Azenha, H.D. Burrows, C. Serpa, L.G. Arnaut, M.J. Tapia, M. Sarakha, P. Wong-Wah-Chung, S. Navaratnam, Photochem. Photobiol. Sci. 4, 617 (2005)CrossRefGoogle Scholar
  37. 37.
    F.L. Guern, C.F. Bied-Charreton, J. Bull. Soc. Chim. Fr. 130, 753 (1993)Google Scholar
  38. 38.
    V. Etacheri, C.D. Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C Photochem. Rev. 25, 1 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Zhao, Y. Wang, W. Feng, H. Lei, J. Li, RSC Adv. 7, 52738 (2017)CrossRefGoogle Scholar
  40. 40.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson et al., Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, 2010)Google Scholar
  41. 41.
    J. Fujisawa, T. Eda, M. Hanaya, Chem. Phys. Lett. 685, 23 (2017)CrossRefGoogle Scholar
  42. 42.
    J. Jeong, R.S. Kumar, N. Mergu, Y.-A. Son, J. Mol. Struct. 1147, 469 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Kim, R.S. Kumar, N. Mergu, K. Jun, Y.A. Son, J. Nanosci. Nanotechnol. 18, 3192 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Advanced Organic Materials EngineeringChungnam National UniversityDaejeonSouth Korea

Personalised recommendations