Fabrication of novel graphene aerogel by the assistance of l-tyrosine and excellent adsorption for organic solvents

  • Deli LuEmail author
  • Hongzhi LiuEmail author


Firstly, taking l-tyrosine as the reductant, one novel three-dimensional graphene aerogel with excellent adsorption capacity to appointed organic solvents was fabricated and characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetric analysis, etc. This graphene aerogel adsorbent with good mechanical property and low density possessed a good adsorption and selectivity to some appointed solvents, such as CHCl3, CHCl2, etc., and the adsorption amount to CH2Cl2 even could reach 87.6 g g−1. Hence, the prepared l-tyrosine reduced graphene aerogel with facility fabrication and favorable selective adsorption, as an effective, environmentally friendly, adsorption material could be applied in environmental remediation for special organic solvents adsorption, potentially.


Graphene aerogel Adsorption Organic solvents 



This project was supported by Natural Science Foundation of Shanghai (Project Number 14ZR1440500), China Postdoctoral Science Foundation (Project Number 2017M610427), National Natural Science Foundation of China (Project Number 20976105), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201833) and Zhishui Talent Development Funding of Rugao (Project Number J2018-315).

Supplementary material

11164_2019_3947_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1386 kb)


  1. 1.
    M. Iqbal, Chemosphere 144, 785 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Abbas, M. Adil, S.E. Haque, B. Munir, M. Iqbal, Sci. Total Environ. 626, 1295 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Iqbal, M. Abbas, A. Nazir, A.Z. Qamar, Chem. Int. 5, 1 (2019)Google Scholar
  4. 4.
    T.N. Chikwe, R.E. Ekpo, I. Okoye, Chem. Int. 4, 230 (2018)Google Scholar
  5. 5.
    S. Ghezali, A.M. Benzerdjeb, M. Ameri, A.Z. Bouyakoub, Chem. Int. 4, 24 (2018)Google Scholar
  6. 6.
    S. Ata, I. Shaheen, Q. Ayne, S. Ghafoor, M. Sultan, F. Majid, I. Bibi, M. Iqbal, Diam. Relat. Mater. 90, 26 (2018)CrossRefGoogle Scholar
  7. 7.
    K. Qureshi, M.Z. Ahmad, I.A. Bhatti, M. Zahid, J. Nisar, M. Iqbal, J. Mol. Liq. 285, 778 (2019)CrossRefGoogle Scholar
  8. 8.
    H.N. Bhatti, J. Hayat, M. Iqbal, S. Noreen, S. Nawaz, J. Mater. Res. Technol. 7, 300 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Cao, L. Zang, Z. Bu, L. Sun, D. Guo, C. Wang, J. Mater. Chem. A. 4, 10479 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Wang, E. Wang, Z. Liu, D. Gao, R. Yuan, L. Sun, Y. Zhu, J. Mater. Chem. A. 3, 266 (2015)CrossRefGoogle Scholar
  11. 11.
    A.M. Atta, K.F. Arndt, J. Polym. Res. 12, 77 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Ren, X. Zhang, D. Lu, B. Chang, J. Lin, S. Han, Res. Chem. Intermed. 44, 5139 (2018)CrossRefGoogle Scholar
  13. 13.
    L.G. Bach, T.V. Tran, T.D. Nguyen, T.V. Pham, S.T. Do, Res. Chem. Intermed. 44, 1661 (2018)CrossRefGoogle Scholar
  14. 14.
    W. Iqbal, B. Tian, M. Anpo, J. Zhang, Res. Chem. Intermed. 43, 5187 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Wan, H. Bi, L. Sun, Nanotechnology Reviews. 5, 3 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Zhao, W. Ren, H.M. Cheng, J. Mater. Chem. 22, 20197 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Zhu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Adv. Func. Mater. 25, 597 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Wan, F. Zhang, S. Yu, R. Zhang, Y. Zhou, New J. Chem. 40, 3040 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Xu, G. Xiao, C. Chen, R. Li, Y. Mai, G. Sun, D. Yan, J. Mater. Chem. A. 3, 7498 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Liao, Z. Tang, Y. Lei, B. Guo, J. Phys. Chem. C 115, 20740 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, Z. Shi, J. Yin, ACS Appl. Mater. Interfaces. 3, 1127 (2011)CrossRefGoogle Scholar
  22. 22.
    Z. Xu, C. Gao, Macromolecules 43, 6716 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Li, C. Chen, J. Li, L. Xu, G. Xiao, D. Yan, J. Mater. Chem. A. 2, 3057 (2013)CrossRefGoogle Scholar
  24. 24.
    J.Y. Hong, E.H. Sohn, S. Park, H.S. Park, Chem. Eng. J. 269, 229 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Chen, Q. Pan, ACS Nano 7, 6875 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.E. Shin, Y.J. Sa, S. Park, J. Lee, K.H. Shin, S.H. Joo, H. Ko, Nanoscale. 6, 9734 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Ham, T.V. Khai, N.H. Park, D.S. So, J.W. Lee, H.G. Na, Y.J. Kwon, H.Y. Cho, H.W. Kim, Nanotechnology. 25, 235601 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Chen, R. Du, J. Zhang, T. Yi, J. Mater. Chem. A 3, 20547 (2015)CrossRefGoogle Scholar
  29. 29.
    D.N.H. Tran, S. Kabiri, D. Losic, Carbon 76, 193 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Zhou, W.G. Bouwman, H. Schut, C. Pappas, Carbon 69, 17 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Zhou, Y. Zhai, S. Dong, Anal. Chem. 81, 5603 (2009)CrossRefGoogle Scholar
  32. 32.
    W. Wan, R. Zhang, W. Li, H. Liu, Y. Lin, L. Li, Y. Zhou, Environmental Science NANO 3, 107 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Huang, X. Li, Y. Jiao, J. Shi, Ind. Eng. Chem. Res. 54, 1842 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations