Advertisement

A convenient approach directly from triglycerides toward the producing of thia-wax esters as bio- and chemical raw materials

  • 94 Accesses

Abstract

Practical and efficient method has been developed for the preparation of novel sulfur-containing esters from triglycerides as potential important industrial and biomaterials. The fact that these unusual compounds are not found in natural sources encourages both academic and industrial communities for their preparation with suitable chemical or enzymatic processes. In general, enzymatic processes requiring more laborious synthesis and product isolation stages. On the other hand, known chemical methods for the preparation of normal wax esters have several drawbacks cited in the present work. Therefore, the chemical method developed in the present study is environmentally benign and suitable for both small- and large-scale syntheses of normal and unusual wax esters. For this purpose, triglycerides were taken to the transesterification reaction in a solvent-free medium with synthetic thia-long-chain alcohols at a ratio of (1:3). In order to catalyze the reaction, newly synthesized bis-imidazole-based metal-free acidic ionic liquid was used and the thia-mono esters were obtained in a fairly short period of time (6 h) with good to excellent yields. The catalyst reuse and large-scale synthesis studies were also carried out.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8
Fig. 9

References

  1. 1.

    H.M. Alvarez, in Handbook of Hydrocarbon and Lipid Microbiology, ed. By K.N. Timmis (in-chief), T.J. McGenity, J.R. Van der Meer, V. De Lorenzo (Springer, Berlin, 2010) p. 2995

  2. 2.

    B.W. Darvell, Materials Science for Dentistry, 9th edn. (Woodhead Publishing, Cambridge, 2009), p. 390

  3. 3.

    P. Wu, H.J. Grav, R. Horn, J. Bremer, Biochem. Pharmacol. 51, 751 (1996)

  4. 4.

    M.S.F.L.K. Jie, M.S.K.S. Rahmatullah, J. Am. Oil Chem. Soc. 72, 1381 (1995)

  5. 5.

    S. Skrede, H.N. Sørensen, L.N. Larsen, H.H. Steineger, K. Høvik, Ø.S. Spydevold, R. Horn, J. Bremer, Biochim. Biophys. Acta, Lipids Lipid Metab. 1344 115 (1997)

  6. 6.

    M. Nerantzaki, K.V. Adam, I. Koliakou, E. Skoufa, A. Avgeropoulos, G.Z. Papageorgiou, D. Bikiaris, Macromol. Chem. Phys. 218, 1700305 (2017)

  7. 7.

    M. Desroches, S. Caillol, V. Lapinte, R. Auvergne, B. Boutevin, Macromolecules 44, 2489 (2011)

  8. 8.

    J. Skorve, A.C. Rustan, R.K. Berge, Lipids 30, 987 (1995)

  9. 9.

    D.K. Asiedu, L. Frøyland, H. Vaagenes, Ø. Lie, A. Demoz, R.K. Berge, Biochim. Biophys. Acta, Lipids Lipid Metab. 1300, 86 (1996)

  10. 10.

    K.J. Tronstad, Ø. Bruserud, K. Berge, R.K. Berge, Leukemia 16, 2292 (2002)

  11. 11.

    M.K. Pandey, A. Bansal, T.R. DeGrado, Heart Metab. 51, 15 (2011)

  12. 12.

    A. Aarsland, N. Aarsaether, J. Bremer, R.K. Berge, J. Lipid Res. 30, 1711 (1989)

  13. 13.

    H. Wang, X. Liu, Y. Wang, Y. Chen, Q. Jin, J. Ji, J. Mater. Chem. B 3, 3297 (2015)

  14. 14.

    U.S. Government. Code of Federal Regulations, vol. 3 Part 182, Section 182.3280, Code No. 21CFR182.3280 (2004)

  15. 15.

    A.O. Patil, S. Bodige, M.P. Hagemeister, U.S. Patent 0275129A1 (2015)

  16. 16.

    T. Noda, A. Nagata, Y. Abe, T. Sunada, JP Patent 2017081833A (2017)

  17. 17.

    M. Dexter, D. Steinberg, U.S. Patent 3758549A (1973)

  18. 18.

    J.M. Herdan, G. Valeanu, A. Popescu, J. Synth. Lubr. 12, 91 (1995)

  19. 19.

    K. Weissermel, H.D. Hermann, C. Heuck, C. Kuellmar, O. Mauz, M. Reiber, J. Winter, DE Patent 1117868 (1961)

  20. 20.

    H.Z. Lecher, N.J. Plainfield, H. Braus, U.S. Patent 3,222,318 (1965)

  21. 21.

    G. Michels, U. Jansen, F. Eisentrager, S. Kaminsky, DE Patent WO2017/211783A1 (2017)

  22. 22.

    W. Hiroaki, M. Harada, K. Nose, JP Patent WO2012049814A1 (2012)

  23. 23.

    A.S. Touchy, K. Kon, W. Onodera, K. Shimizu, Adv. Synth. Catal. 357, 1499 (2015)

  24. 24.

    K. Ishihara, M. Nakayama, S. Ohara, H. Yamamoto, Tetrahedron 5, 8179 (2002)

  25. 25.

    A. Sakthivel, K. Komura, Y. Sugi, Ind. Eng. Chem. Res. 47, 2538 (2008)

  26. 26.

    F. Liu, K. Huang, S. Ding, S. Dai, J. Mater. Chem. A 4, 14567 (2016)

  27. 27.

    Q. Wu, F. Liu, X. Yi, Y. Zoud, L. Jiang, Green Chem. 20, 1020 (2018)

  28. 28.

    F. Liu, K. Huang, Q. Wu, S. Dai, Adv. Mater. 29, 1700445 (2017)

  29. 29.

    F. Liu, K. Huang, A. Zheng, F.S. Xiao, S. Dai, ACS Catal. 8, 372 (2018)

  30. 30.

    F. Liu, C. Liu, W. Kong, C. Qi, A. Zheng, S. Dai, Green Chem. 18, 6536 (2016)

  31. 31.

    N. Weber, E. Klein, K. Vosmann, J. Agric. Food Chem. 54, 2957 (2003)

  32. 32.

    N. Ieda, K. Mantri, Y. Miyata, A. Ozaki, K. Komura, Y. Sugi, Ind. Eng. Chem. Res. 47, 8631 (2008)

  33. 33.

    H. Chen, X. Xu, L. Liu, G. Tang, Y. Zhao, RSC Adv. 3, 16247 (2013)

  34. 34.

    K. Mantri, K. Komura, Y. Sugi, Synthesis 12, 1939 (2005)

  35. 35.

    A.C. Cole, J.L. Jenson, I. Ntai, K.L.T. Tran, K.J. Wearver, D.C. Forbes, J.H. Davis, J. Am. Chem. Soc. 124, 5962 (2002)

  36. 36.

    H.P. Zhu, F. Yang, J. Tang, M.Y. He, Green Chem. 5, 38 (2003)

  37. 37.

    J. Gui, X. Cong, D. Liu, X. Zhang, Z. Hu, Z. Sun, Catal. Commun. 5, 473 (2004)

  38. 38.

    H. Zhang, F. Xu, X. Zhou, G. Zhang, C. Wang, Green Chem. 9, 1208 (2007)

  39. 39.

    O. Kocian, K. Stransky, J. Zavada, Collect. Czechoslov. Chem. Commun. 47, 1356 (1982)

  40. 40.

    B. Boutevin, A. El Idrissi, J.P. Parkisi, Makromol. Chem. 191, 445 (1990)

  41. 41.

    M. Mansueto, C.K. Kreß, S. Laschat, Tetrahedron 70, 6258 (2014)

  42. 42.

    J. Kirres, K. Schmitt, I. Wurzbach, F. Giesselmann, S. Ludwigs, M. Ringenberg, A. Ruff, A. Baro, S. Laschat, Org. Chem. Front. 4, 790 (2017)

  43. 43.

    J.F. Xu, Y.Z. Chen, L.Z. Wu, C.H. Tung, Q.Z. Yang, Org. Lett. 15, 6148 (2013)

  44. 44.

    R. Sheldon, Chem. Commun. 0, 2399 (2001)

  45. 45.

    A.S. Amarasekara, Chem. Rev. 116, 6133 (2016)

  46. 46.

    A. Yıldırım, S. Mudaber, S. Öztürk, Eur. J. Lipid Sci. Technol. 121, 1800303 (2019)

  47. 47.

    A. Yıldırım, K. Kıraylar, Turk. J. Chem. 43, 802 (2019)

  48. 48.

    J.L. Anderson, R. Ding, A. Ellern, D.W. Armstrong, J. Am. Chem. Soc. 127, 593 (2005)

  49. 49.

    H. Eshghi, M. Rahimizadeh, M. Hasanpour, M. Bakavoli, Res. Chem. Intermed. 41, 4187 (2015)

  50. 50.

    MarvinSketch (Product Version: 15.6.29.0, calculation module developed by ChemAxon) (2015)

  51. 51.

    S.Y. Bae, M.D. Winemiller, J. Org. Chem. 78, 6457 (2013)

  52. 52.

    L.M. Ling, X.H. Ling, S. Ming, Y. Ling, H.S. Tong, Phosphorus. Sulfur Silicon Relat. Elem. 189, 387 (2014)

  53. 53.

    Y.C. Yang, L.L. Szafraniec, W.T. Beaudry, J.R. Ward, J. Org. Chem. 53, 3293 (1988)

  54. 54.

    P. Sun, S. Liu, Y. Zhou, S. Zhang, Z. Yao, ACS Sustainable Chem. Eng. 6, 13579 (2018)

  55. 55.

    B.J.K. Ahn, S. Kraft, X.S. Sun, J. Agric. Food Chem. 60, 2179 (2012)

Download references

Acknowledgements

This work was financially supported by the Bursa Uludağ University Scientific Research Projects Unit (OUAP(F)-2018/3).

Author information

Correspondence to Ayhan Yıldırım.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, A., Kıraylar, K. & Öztürk, S. A convenient approach directly from triglycerides toward the producing of thia-wax esters as bio- and chemical raw materials. Res Chem Intermed 46, 215–230 (2020). https://doi.org/10.1007/s11164-019-03944-8

Download citation

Keywords

  • Straight-chain thia-esters
  • Renewable feedstocks
  • Biomaterials
  • Catalysis