Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 149–164 | Cite as

Imidacloprid photo-degradation on Ag/AgBr modified TiO2: critical impacts and quantitative study on mechanism

  • Jialin Sun
  • Jingtao Dai
  • Rui Liu
  • Xiaowei Yang
  • Jian ChenEmail author
Article
  • 47 Downloads

Abstract

To improve the visible-light catalytic performance of TiO2 for practical application, Ag/AgBr modified TiO2 was fabricated in ionic liquid–water medium via a facile hydrothermal reduction method. Imidacloprid (IMI) was employed as the target pollutant to evaluate the critical impacts on the catalytic activity of as-prepared Ag/AgBr/TiO2, where the factors relating to the catalyst (composition, dosage, recycle and reuse) and solution chemistry (pH and concentration, simulated wastewater samples and floodwater of rice paddy field) were studied. The results suggested that benefitting from visible-light sensitive Ag/AgBr and high specific surface area TiO2, Ag/AgBr/TiO2 exhibits superior visible-light photocatalytic activity and stability to Ag/AgBr and TiO2. The quenching tests with various scavengers indicate that ·O2 and h+, and ·O2 and ·OH may be the key roles in IMI photo-degradation on Ag/AgBr and on Ag/AgBr/TiO2, respectively. Thus, the photocatalytic performance of Ag/AgBr/TiO2 differs from that of Ag/AgBr. Furthermore, the contribution of such active species is clarified for quantitative mechanisms study. The photo-degradation conducted in the simulated wastewater and the floodwater of rice paddy field proves favorable anti-interference capacity of Ag/AgBr/TiO2. The tests conducted on real wastewater sample verified that Ag/AgBr/TiO2 can mineralize IMI promptly and almost completely.

Keywords

Ag/AgBr/TiO2 Imidacloprid Visible-light photocatalysis Wastewater 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21307103, 41877118, 51702279), Qing-Lan Project of Jiangsu Province, and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB610013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11164_2019_3940_MOESM1_ESM.docx (346 kb)
Supplementary material 1 (DOCX 345 kb)

References

  1. 1.
    M. Turabik, N. Oturan, B. Gözmen, M.A. Oturan, Environ. Sci. Pollut. Res. 21, 8387 (2014)Google Scholar
  2. 2.
    J. Tang, X. Huang, X. Huang, L. Xiang, Q. Wang, Environ. Earth Sci. 66, 441 (2011)Google Scholar
  3. 3.
    L.M. Silva, R.P.A. dos Santos, C.C.O. Morais, C.L. Vasconcelos, C.A. Martínez-Huitle, S.S.L. Castro, J. Electrochem. Soc. 164, E489 (2017)Google Scholar
  4. 4.
    B.K. Lavine, T. Ding, D. Jacobs, Anal. Lett. 43, 1812 (2010)Google Scholar
  5. 5.
    V. Kitsiou, N. Filippidis, D. Mantzavinos, I. Poulios, Appl. Catal. B 86, 27 (2009)Google Scholar
  6. 6.
    T. Ding, D. Jacobs, B.K. Lavine, Microchem. J. 99, 535 (2011)Google Scholar
  7. 7.
    A. Verma, A.P. Toor, N.T. Prakash, P. Bansal, V.K. Sangal, New J. Chem. 41, 6296 (2017)Google Scholar
  8. 8.
    X. Liu, X. Wu, Z. Long, C. Zhang, Y. Ma, X. Hao, H. Zhang, C. Pan, J. Agric. Food Chem. 63, 4754 (2015)PubMedGoogle Scholar
  9. 9.
    N. Philippidis, S. Sotiropoulos, A. Efstathiou, I. Poulios, J. Photochem. Photobiol. A 204, 129 (2009)Google Scholar
  10. 10.
    M.A. Munawar Iqbal, J. Nisar, A. Nazir, A.Z. Qamar, Chem. Int. 5, 1 (2019)Google Scholar
  11. 11.
    M. Abbas, M. Adil, S. Ehtishamulhaque, B. Munir, M. Yameen, A. Ghaffar, G.A. Shar, M.A. Tahir, M. Iqbal, Sci. Total Environ. 626, 1295 (2018)PubMedGoogle Scholar
  12. 12.
    M. Iqbal, Chemosphere 144, 785 (2016)PubMedGoogle Scholar
  13. 13.
    C. McCullagh, N. Skillen, M. Adams, P.K.J. Robertson, J. Chem. Technol. Biotechnol. 86, 1002 (2011)Google Scholar
  14. 14.
    M. Kanwal, S.R. Tariq, G.A. Chotana, Environ. Sci. Pollut. Res. 25, 27307 (2018)Google Scholar
  15. 15.
    Y. Sun, P. Meng, X. Liu, Appl. Surf. Sci. 456, 259 (2018)Google Scholar
  16. 16.
    A. Akbari Shorgoli, M. Shokri, Chem. Eng. Commun. 204, 1061 (2017)Google Scholar
  17. 17.
    I.S. Grover, S. Singh, B. Pal, J. Agric. Food Chem. 62, 12497 (2014)PubMedGoogle Scholar
  18. 18.
    J. Marugán, M. Lópezmuñoz, W. Gernjak, S. Malato, Ind. Eng. Chem. Res. 45, 8900 (2006)Google Scholar
  19. 19.
    S. Malato, J. Caceres, A. Agüera, M. Mezcua, D. Hernando, J. Vial, A.R. Fernández-Alba, Environ. Sci. Technol. 35, 4359 (2001)PubMedGoogle Scholar
  20. 20.
    G. Rózsa, M. Náfrádi, T. Alapi, K. Schrantz, L. Szabó, L. Wojnárovits, E. Takács, A. Tungler, Appl. Catal. B 250, 429 (2019)Google Scholar
  21. 21.
    D. Zhang, H. Tang, Y. Wang, K. Wu, H. Huang, G. Tang, J. Yang, Appl. Surf. Sci. 319, 306 (2014)Google Scholar
  22. 22.
    N.U. Saqib, R. Adnan, I. Shah, Environ. Sci. Pollut. Res. 23, 15941 (2016)Google Scholar
  23. 23.
    H. Heng, Q. Gan, P. Meng, X. Liu, RSC Adv. 6, 73301 (2016)Google Scholar
  24. 24.
    C. Xue, X. Yan, S. Ding, G. Yang, RSC Adv. 6, 68653 (2016)Google Scholar
  25. 25.
    H. Liang, D. Yu, J. Bai, C. Li, T. Ma, Compos. Interfaces 22, 663 (2015)Google Scholar
  26. 26.
    L. Liu, H. Xu, H. Li, Y. Xu, J. Xia, S. Yin, J. Phys. Chem. Solids 73, 523 (2012)Google Scholar
  27. 27.
    W. Jiang, C. An, J. Liu, S. Wang, L. Zhao, W. Guo, J. Liu, Dalton Trans. 43, 300 (2014)PubMedGoogle Scholar
  28. 28.
    Q. Li, Y. Xing, R. Li, L. Zong, X. Wang, J. Yang, RSC Adv. 2, 9781 (2012)Google Scholar
  29. 29.
    M. Padervand, H. Salari, F.S. Darabi, M.K. Moghaddam, M.R. Gholami, Int. J. Mater. Chem. 1, 49 (2012)Google Scholar
  30. 30.
    R. Dong, B. Tian, J. Zhang, T. Wang, Q. Tao, S. Bao, F. Yang, C. Zeng, Catal. Commun. 38, 16 (2013)Google Scholar
  31. 31.
    P. Wang, Y. Tang, Z. Dong, Z. Chen, T.T. Lim, J. Mater. Chem. A 1, 4718 (2013)Google Scholar
  32. 32.
    H. Xu, Y. Song, L. Liu, H. Li, Y. Xu, J. Xia, X. Wu, S. Zhao, J. Chem. Technol. Biotechnol. 87, 1626 (2012)Google Scholar
  33. 33.
    C. Zeng, B. Tian, J. Zhang, J. Colloid Interface Sci. 405, 17 (2013)PubMedGoogle Scholar
  34. 34.
    W. Wang, L. Jing, Y. Qu, Y. Luan, H. Fu, Y. Xiao, J. Hazard. Mater. 243, 169 (2012)PubMedGoogle Scholar
  35. 35.
    R. Velmurugan, M. Swaminathan, Res. Chem. Intermed. 41, 1227 (2013)Google Scholar
  36. 36.
    Y. Hayashido, S. Naya, H. Tada, J. Phys. Chem. C 120, 19663 (2016)Google Scholar
  37. 37.
    D. Fang, J. Cheng, K. Gong, Q.R. Shi, X.L. Zhou, Z.L. Liu, J. Fluor. Chem. 129, 108 (2008)Google Scholar
  38. 38.
    J. Dai, R. He, Y. Yuan, W. Wang, D. Fang, Environ. Technol. 35, 203 (2014)PubMedGoogle Scholar
  39. 39.
    S. Feng, H. Xu, L. Liu, Y. Song, H. Li, Y. Xu, J. Xia, S. Yin, J. Yan, Colloids Surf. A 410, 23 (2012)Google Scholar
  40. 40.
    Y. Xu, H. Xu, H. Li, J. Yan, J. Xia, S. Yin, Q. Zhang, Colloids Surf. A 416, 80 (2013)Google Scholar
  41. 41.
    H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, A.C.S. Appl, Mater. Interfaces 3, 22 (2011)Google Scholar
  42. 42.
    American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 21st edn. (American Public Health Association, Washington, DC, 2005)Google Scholar
  43. 43.
    B. Cai, J. Wang, D. Han, S. Gan, Q. Zhang, Z. Wu, L. Niu, Nanoscale 5, 10989 (2013)PubMedGoogle Scholar
  44. 44.
    D.M. Tobaldi, C. Piccirillo, R.C. Pullar, A.F. Gualtieri, M.P. Seabra, P.M.L. Castro, J.A. Labrincha, J. Phys. Chem. C 118, 4751 (2014)Google Scholar
  45. 45.
    J.H. Seo, W.I. Jeon, U. Dembereldorj, S.Y. Lee, S.W. Joo, J. Hazard. Mater. 198, 347 (2011)PubMedGoogle Scholar
  46. 46.
    Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Environ. Sci. Technol. 46, 4042 (2012)PubMedGoogle Scholar
  47. 47.
    X. Deng, H. Zhang, R. Guo, X. Cheng, Q. Cheng, Appl. Surf. Sci. 441, 420 (2018)Google Scholar
  48. 48.
    K.S.W. Sing, Pure Appl. Chem. 57, 603 (1985)Google Scholar
  49. 49.
    D.N. Bose, P.A. Govindacharyulu, Bull. Mater. Sci. 2, 221 (1980)Google Scholar
  50. 50.
    V.K. Sharma, P.K. Dutta, A.K. Ray, J. Environ. Sci. Health A 42, 997 (2007)Google Scholar
  51. 51.
    M.B. Brahim, H.B. Ammar, R. Abdelhédi, Y. Samet, Korean J. Chem. Eng. 33, 2602 (2016)Google Scholar
  52. 52.
    X. Liu, Y. Tian, X. Zhou, Z. Liu, L. Huang, J. Chin. Chem. Soc. 64, 55 (2017)Google Scholar
  53. 53.
    J. Niu, Y. Li, W. Wang, Chemosphere 92, 1423 (2013)PubMedGoogle Scholar
  54. 54.
    W. Shi, H. Lv, S. Yuan, H. Huang, Y. Liu, Z. Kang, Sep. Purif. Technol. 174, 75 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of New Energy on Chemical Storage and Power Sources, Institute of Environmental Toxicology and Environmental Ecology, College of Chemistry and Environmental EngineeringYancheng Teachers UniversityYanchengPeople’s Republic of China
  2. 2.Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied EcologyChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations