Advertisement

Immobilization of horseradish peroxidase on polyglycerol-functionalized magnetic Fe3O4/nanodiamond nanocomposites and its application in phenol biodegradation

  • 73 Accesses

Abstract

In this study, Fe3O4/nanodiamond nanocomposites (MND) were synthesized by polyglycerol-mediated covalent bonding. The horseradish peroxidase (HRP) was successfully immobilized on PG layer of MND by interaction between functional groups of MND and HRP, where the HRP molecules became tridimensionally connected outside the MND. The physicochemical properties of MND were analyzed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy measurements, vibrating sample magnetometer, Fourier transform infrared spectroscopy and zeta potential. The optimal conditions for the immobilization of HRP by MND are 7 mg/L, 35 °C and 3 h, respectively. Then, the effects of temperature, pH and storage time on the activity of immobilized enzyme and free enzyme were studied. The results showed that the relative activities of immobilized enzymes were higher than free enzymes at different temperatures, pH and storage time. In addition, the reusability experiments of immobilized enzymes showed that after six cycles, the immobilized HRP retained a relative activity of 75%. Applied to the removal of phenol, the effects of phenol concentration, H2O2/phenol molar concentration, immobilized HRP concentration and temperature on phenol removal were investigated. The results displayed that the removal efficiency of phenol reached a maximum when the phenol concentration was 75 mg/L, the ratio of H2O2 to phenol was 1, the immobilized HRP concentration was 0.25 mg/L and the temperature was 30 °C. The above results indicate that the immobilized HRP exhibits high removal efficiency and has great potential for removing phenol.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    N.V. Pradeep, S. Anupama, K. Navya, H.N. Shalini, M. Idris, U.S. Hampannavar, Appl. Water Sci. 5, 105 (2015)

  2. 2.

    K.M. Koeller, C.H. Wong, Nature 409, 232 (2001)

  3. 3.

    J. Ai, W. Zhang, H. Xia, D. Wang, RSC Adv. 6, 38117 (2016)

  4. 4.

    S. Roger, V.P. Sander, Chem. Soc. Rev. 42, 6223 (2013)

  5. 5.

    I. Iñarritu, E. Torres, A. Topete, J. Campos-Terán, J. Colloid Interface Sci. 506, 36 (2017)

  6. 6.

    J. Du, M.D. Cao, S.L. Feng, F. Su, X.J. Sang, L.C. Zhang, W.S. You, M. Yang, Z.M. Zhu, Chem. Eur. J. 23, 14614 (2017)

  7. 7.

    C. Qing, Z. Lihua, J. Guodong, T. Heqing, Anal. Bioanal. Chem. 395, 2377 (2009)

  8. 8.

    F. Zhang, B. Zheng, J. Zhang, X. Huang, H. Liu, S. Guo, J. Zhang, J. Phys. Chem. C 114, 8469 (2010)

  9. 9.

    R. Zhai, B. Zhang, Y. Wan, C. Li, J. Wang, J. Liu, Chem. Eng. J. 214, 304 (2013)

  10. 10.

    L. Jianping, J. Huangxian, Chem. Soc. Rev. 41, 2122 (2012)

  11. 11.

    R. Xu, Y. Si, F. Li, B. Zhang, Environ. Sci. Pollut. Res. 22, 3838 (2015)

  12. 12.

    Z. Karim, R. Adnan, Q. Husain, Int. Biodeterior. Biodegrad. 72, 10 (2012)

  13. 13.

    Y. Su, X. Zhou, Y. Long, W. Li, Microchim. Acta 185, 114 (2018)

  14. 14.

    H. Sun, X. Jin, F. Jiang, R. Zhang, Biotechnol. Appl. Biochem. 65, 220 (2018)

  15. 15.

    C. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Adv. Synth. Catal. 353, 2885 (2011)

  16. 16.

    Z. Paolo, S. Enrico, Molecules 19, 14139 (2014)

  17. 17.

    E. Yilmaz, Hİ. Ulusoy, Ö. Demir, M. Soylak, J. Chromatogr. B 1084, 113 (2018)

  18. 18.

    A.I. Gopalan, S. Komathi, G.S. Anand, K.P. Lee, Biosens. Bioelectron. 46, 136 (2013)

  19. 19.

    L. Wei, W. Zhang, H. Lu, P. Yang, Talanta 80, 1298 (2010)

  20. 20.

    N. Sohrabi, N. Rasouli, M. Torkzadeh, Chem. Eng. J. 286, 216 (2016)

  21. 21.

    Q. Chang, J. Huang, Y. Ding, H. Tang, Molecules 21, 1044 (2016)

  22. 22.

    J. Feng, S. Yu, J. Li, T. Mo, P. Li, Chem. Eng. J. 286, 216 (2016)

  23. 23.

    S. Kim, J. Lee, S. Jang, H. Lee, D. Sung, J.H. Chang, Biochem. Eng. J. 105, 406 (2016)

  24. 24.

    L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, Adv. Funct. Mater. 22, 5107 (2012)

  25. 25.

    Z. Li, T. Tatsuya, I. Masaaki, K. Naoko, K. Takahide, K. Naoki, Angew. Chem. Int. Ed. 50, 1388 (2011)

  26. 26.

    X. Yang, Y. Wen, A. Wu, M. Xu, T. Amano, L. Zheng, L. Zhao, Mater. Sci. Eng. C 80, 517 (2017)

  27. 27.

    X. Yang, L. Zhao, L. Zheng, M. Xu, X. Cai, Colloids Surf. B 163, 167 (2017)

  28. 28.

    X. Yang, A. Li, W. Wang, C. Zhang, J. Wang, B. Yu, X. Cai, J. Chem. Technol. Biotechnol. 93, 2635 (2018)

  29. 29.

    L. Wang, K.G. Neoh, E.T. Kang, B. Shuter, S.C. Wang, Adv. Funct. Mater. 19, 2615 (2010)

  30. 30.

    J.B.W. Hammond, N.J. Kruger, Methods Mol. Biol. 32, 9 (1988)

  31. 31.

    L.A. Decker, Worthington enzyme manual (1977)

  32. 32.

    I. Nair, C. Indu, K. Jayachandran, S. Shashidhar, Afr. J. Biotechnol. 7, 4951 (2008)

  33. 33.

    M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, J. Hazard. Mater. 190, 993 (2011)

  34. 34.

    B. Ren, J. Huang, H. Yu, W. Yang, L. Wang, Z. Pan, L. Wang, Appl. Surf. Sci. 388, 565 (2016)

  35. 35.

    L. Zhao, Y.H. Xu, H. Qin, S. Abe, T. Akasaka, T. Chano, F. Watari, T. Kimura, N. Komatsu, X. Chen, Adv. Funct. Mater. 24, 5348 (2014)

  36. 36.

    A. Xie, J. Dai, X. Chen, P. Ma, J. He, C. Li, Z. Zhou, Y. Yan, Chem. Eng. J. 304, 609 (2016)

  37. 37.

    B. Huang, Y. Liu, B. Li, S. Liu, G. Zeng, Z. Zeng, X. Wang, Q. Ning, B. Zheng, C. Yang, Carbohydr. Polym. 157, 576 (2017)

  38. 38.

    A.Z. Badruddoza, A.S. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, J. Hazard. Mater. 185, 1177 (2011)

  39. 39.

    S. Cho, J.W. Jang, J.S. Lee, K.H. Lee, CrystEngComm 12, 3929 (2010)

  40. 40.

    Y. Lei, F. Chen, Y. Luo, L. Zhang, J. Mater. Sci. 49, 4236 (2014)

  41. 41.

    S. Akbar, S.K. Hasanain, M. Abbas, S. Ozcan, B. Ali, S.I. Shah, Solid State Commun. 151, 17 (2011)

  42. 42.

    C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Enzyme Microb. Technol. 40, 1451 (2007)

  43. 43.

    S.A. Ansari, Q. Husain, Biotechnol. Adv. 30, 512 (2012)

  44. 44.

    J. Wang, W. Zhang, C. Gu, W. Zhang, M. Zhou, Z. Wang, C. Guo, L. Sun, Chem. Asian J. 12, 3162 (2017)

  45. 45.

    J. Cheng, S.M. Yu, P. Zuo, Water Res. 40, 283 (2006)

Download references

Acknowledgements

This work was supported by the Project of Innovation for Enhancing Guangdong Pharmaceutical University, Provincial Experimental Teaching Demonstration Center of Chemistry and Chemical Engineering.

Author information

Correspondence to Xiulan Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, A., Yang, X., Yu, B. et al. Immobilization of horseradish peroxidase on polyglycerol-functionalized magnetic Fe3O4/nanodiamond nanocomposites and its application in phenol biodegradation. Res Chem Intermed 46, 101–118 (2020). https://doi.org/10.1007/s11164-019-03937-7

Download citation

Keywords

  • Magnetic Fe3O4/nanodiamond nanocomposites
  • Polyglycerol
  • Immobilized horseradish peroxidase
  • Phenol biodegradation