Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 75–99 | Cite as

Antidiabetic, antioxidant, DFT and molecular docking studies of a triazene derivative and its transition metal complexes

  • Surya PhilipEmail author
  • Elambalassery G Jayasree
  • Kochukittan Mohanan
Article
  • 75 Downloads

Abstract

A triazene derivative and its transition metal complexes were prepared and characterized using molar conductance, magnetic susceptibility measurements, IR, UV–visible, NMR spectral studies wherever possible and applicable. The structure of the ligand and metal complexes was further confirmed using DFT calculations with the help of B97d method with 6-311++G(d,p) basis set. The antidiabetic and antioxidant activities of the ligand and the metal complexes were studied. The ligand showed potential biological activities which increased on chelation with metal ion. Apart from this, the molecular docking studies were carried out in order to understand the binding interaction of the ligand and its metal complexes with active sites of the target proteins.

Keywords

Triazene derivative Antidiabetic activity Antioxidant activity DFT studies Molecular docking 

Notes

Supplementary material

11164_2019_3936_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. 1.
    D.B. Kimball, M.M. Haley, Angew. Chem. Int. Ed. 41, 3338 (2002)CrossRefGoogle Scholar
  2. 2.
    B.R. Henke, T.G. Consler, N. Go, J. Med. Chem. 45, 5492 (2002)CrossRefGoogle Scholar
  3. 3.
    V.K. Pandey, S. Tusi, Z. Tusi, M. Joshi, S. Bajpai, Acta Pharm. 54, 1 (2004)PubMedGoogle Scholar
  4. 4.
    D.F. Back, M. Horner, F. Broch, G.M. de Oliveira, Polyhedron 31, 558 (2012)CrossRefGoogle Scholar
  5. 5.
    L. D. Quin, J. Tyrell, Fundamentals of heterocyclic chemistry: Importance in nature and in the synthesis of pharmaceuticals, Wiley-Interscience, 2010Google Scholar
  6. 6.
    C.O. Kappe, Tetrahedron 49, 6937 (1993)CrossRefGoogle Scholar
  7. 7.
    G. Meng, Y. Liu, A. Zheng, F. Chen, W. Chen, Eur. J. Med. Chem. 82, 600 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Diabetes Care 27, 1047 (2004)CrossRefGoogle Scholar
  9. 9.
    R.M. Poole, R.T. Dungo, Drugs 74, 611 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Gewald, E. Chinke, H. Bottcher, Chem. Ber. 99, 94 (1966)CrossRefGoogle Scholar
  11. 11.
    E. Apostolidis, Y.I. Kwon, K. Shetty, Innov. Food. Sci. Emerg. Technol. 8, 46 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Oyaizu, J. Nutr. 44, 307 (1986)Google Scholar
  13. 13.
    D.C Garrat, The Quantitative analysis of Drugs. Chapman and Hall Ltd., Japan, 3, 456 (1964)Google Scholar
  14. 14.
    W.J. Geary, Coord. Chem. Rev. 7, 81 (1971)CrossRefGoogle Scholar
  15. 15.
    J. Wang, H. Niino, A. Yabe, Appl. Surf. Sci. 154, 571 (2000)CrossRefGoogle Scholar
  16. 16.
    S.I. Mostafa, M.A. Kabil, E.M. Saad, A.A. El-Asmy, J. Coord. Chem. 59, 279 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Thankamony, S.B. Kumari, G. Rijulal, K. Mohanan, J. Therm. Anal. Cal. 95, 259 (2009)CrossRefGoogle Scholar
  18. 18.
    K.V. Sharma, V. Sharma, R.K. Dubey, U.N. Tripathi, J. Coord. Chem. 62, 493 (2009)CrossRefGoogle Scholar
  19. 19.
    R. M. Shaker, M. A Elrady, K.U Sadek, Mol. Divers. 2016, 20,153 (2016)Google Scholar
  20. 20.
    H.M. Wen, Y.H. Wu, Y. Fan, L.Y. Zhang, C.N. Chen, Z.N. Chen, Inorg. Chem. 249, 2210 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Arab, M. Habibzadeh, Comput. Theor. Chem. 1068, 52 (2015)CrossRefGoogle Scholar
  22. 22.
    R.G. Pearson, Proc. Natl. Acad. Sci. 83, 8440 (1986)CrossRefGoogle Scholar
  23. 23.
    P. Politzer, J.S. Murray, Theor. Chem. Acc. 108, 134 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Murray, P. Politzer, Comput. Mol. Sci. 2, 153 (2011)CrossRefGoogle Scholar
  25. 25.
    S.Q. Zhang, F.L. Jiang, M.Y. Wu, L. Chen, J.H. Luo, M.C. Hong, Cryst. Eng. Comm. 15, 3992 (2013)CrossRefGoogle Scholar
  26. 26.
    W. Zhang, W. Dou, W.S. Liu, X.L. Tang, W.W. Qin, Eur. J. Inorg. Chem. 5, 748 (2011)CrossRefGoogle Scholar
  27. 27.
    A.L. Dawidowicz, D. Wianowska, M. Olszowy, Food Chem. 131, 1037 (2012)CrossRefGoogle Scholar
  28. 28.
    R.E. Huie, S. Padmaja, Free Radical Res. Commun. 18, 1951 (1993)CrossRefGoogle Scholar
  29. 29.
    M.N. Patel, D.S. Gandhi, P.A. Parmar, Inorg. Chem. Commun. 13, 618 (2010)Google Scholar
  30. 30.
    H.Q. Qurrat-ul-Ain, A. Nadhman, M. Sirajuddin, Inorg. Chim. Acta 423, 220 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Taha, M.S. Baharudin, N.H. Ismail, S. Imran, M.N. Khan, F. Rahim, M. Selvaraj, S. Chigurupati, M. Nawaz, F. Qureshii, S. Vijayabalan, Bioorg. Chem. 80, 36 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KeralaTrivandrumIndia

Personalised recommendations